
GTK+ 2.0 Tree View Tutorial

Tim-Philipp Müller

GTK+ 2.0 Tree View Tutorial
by Tim-Philipp Müller

This is a tutorial on how to use the GTK (the GIMP Toolkit) GtkTreeView widget through its C interface.

Please mail all comments and suggestions to <tim at centricular dot net >

A tarball of the tutorial for off-line reading including the example source codes is available here:
treeview-tutorial.tar.gz.

There is also a version in PDF format (for easier printing) and the raw docbook XML source document.

This tutorial is work-in-progress. The latest version can be found at http://scentric.net/tutorial/.

Some sections are a bit outdated (e.g. GtkTreeModelFilter has been in Gtk since 2.4), just haven’t gotten around to
rewrite them or update them. Sorry!

Last updated: June 5th, 2005

Table of Contents
1. Lists and Trees: the GtkTreeView Widget .. 1

1.1. Hello World .. 1
2. Components: Model, Renderer, Column, View .. 4
3. GtkTreeModels for Data Storage: GtkListStore and GtkTreeStore .. 5

3.1. How Data is Organised in a Store... 5
3.2. Refering to Rows: GtkTreeIter, GtkTreePath, GtkTreeRowReference .. 6

3.2.1. GtkTreePath ... 6
3.2.2. GtkTreeIter ... 7
3.2.3. GtkTreeRowReference.. 8
3.2.4. Usage .. 8

3.3. Adding Rows to a Store.. 9
3.3.1. Adding Rows to a List Store.. 9
3.3.2. Adding Rows to a Tree Store... 10
3.3.3. Speed Issues when Adding a Lot of Rows.. 10

3.4. Manipulating Row Data ... 11
3.5. Retrieving Row Data... 12

3.5.1. Freeing Retrieved Row Data ... 13
3.6. Removing Rows... 14
3.7. Removing Multiple Rows .. 15
3.8. Storing GObjects (Pixbufs etc.) .. 16
3.9. Storing Data Structures: of Pointers, GBoxed Types, and GObject (TODO)... 17

4. Creating a Tree View .. 18
4.1. Connecting Tree View and Model... 18

4.1.1. Reference counting ... 18
4.2. Tree View Look and Feel .. 18

5. Mapping Data to the Screen: GtkTreeViewColumn and GtkCellRenderer.. 20
5.1. Cell Renderers.. 20
5.2. Attributes.. 24
5.3. Cell Data Functions ... 25
5.4. GtkCellRendererText and Integer, Boolean and Float Types .. 26
5.5. GtkCellRendererText, UTF8, and pango markup... 26
5.6. A Working Example.. 28
5.7. How to Make a Whole Row Bold or Coloured ... 30
5.8. How to Pack Icons into the Tree View.. 31

6. Selections, Double-Clicks and Context Menus .. 33
6.1. Handling Selections .. 33

6.1.1. Selection Modes .. 33
6.1.2. Getting the Currently Selected Rows... 33
6.1.3. Using Selection Functions.. 34
6.1.4. Checking Whether a Row is Selected... 36
6.1.5. Selecting and Unselecting Rows... 36
6.1.6. Getting the Number of Selected Rows... 36

6.2. Double-Clicks on a Row ... 36
6.3. Context Menus on Right Click .. 37

7. Sorting... 40
7.1. GtkTreeSortable ... 40
7.2. GtkTreeModelSort ... 42
7.3. Sorting and Tree View Column Headers ... 43
7.4. Case-insensitive String Comparing .. 43

8. Editable Cells... 45
8.1. Editable Text Cells ... 45

8.1.1. Setting the cursor to a specific cell.. 45
8.2. Editable Toggle and Radio Button Cells .. 46
8.3. Editable Spin Button Cells.. 46

iii

9. Miscellaneous .. 47
9.1. Getting the Column Number from a Tree View Column Widget .. 47
9.2. Column Expander Visibility .. 48

9.2.1. Hiding the Column Expander .. 48
9.2.2. Forcing Column Expander Visibility ... 48

9.3. Getting the Cell Renderer a Click Event Happened On .. 48
9.4. Glade and Tree Views ... 49

10. Drag’n’Drop (DnD) **** needs revision *** .. 51
10.1. Drag’n’Dropping Row-Unrelated Data to and from a Tree View from other Windows or Widgets 51
10.2. Dragging Rows Around Within a Tree **** TODO *** ... 53
10.3. Dragging Rows from One Tree to Another **** TODO ***.. 54

11. Writing Custom Models... 55
11.1. When is a Custom Model Useful?... 55
11.2. What Does Writing a Custom Model Involve? ... 55
11.3. Example: A Simple Custom List Model ... 55

11.3.1. custom-list.h .. 56
11.3.2. custom-list.c ... 56

11.4. From a List to a Tree.. 58
11.5. Additional interfaces, here: the GtkTreeSortable interface.. 59
11.6. Working Example: Custom List Model Source Code... 64

11.6.1. custom-list.h .. 64
11.6.2. custom-list.c ... 65
11.6.3. main.c.. 75

12. Writing Custom Cell Renderers ... 77
12.1. Working Example: a Progress Bar Cell Renderer.. 77

12.1.1. custom-cell-renderer-progressbar.h ... 77
12.1.2. custom-cell-renderer-progressbar.c .. 78
12.1.3. main.c.. 83

12.2. Cell Renderers Others Have Written .. 84
13. Other Resources .. 86
14. Copyright, License, Credits, and Revision History.. 87

14.1. Copyright and License.. 87
14.2. Credits ... 87
14.3. Revision History .. 87

iv

Chapter 1. Lists and Trees: the GtkTreeView Widget

GtkTreeView is a widget that displays single- or multi-columned lists and trees. It replaces the old Gtk+-1.2 Gtk-
CList and GtkCTree widgets. Even though GtkTreeView is slightly harder to master than its predecessors, it is so
much more powerful and flexible that most application developers will not want to miss it once they have come
to know it.

The purpose of this chapter is not to provide an exhaustive documentation of GtkTreeView - that is what the API
documentation is for, which should be read alongside with this tutorial. The goal is rather to present an intro-
duction to the most commonly-used aspects of GtkTreeView , and to demonstrate how the various GtkTreeView
components and concepts work together. Furthermore, an attempt has been made to shed some light on custom
tree models and custom cell renderers, which seem to be often-mentioned, but rarely explained.

Developers looking for a quick and dirty introduction that teaches them everything they need to know in less than
five paragraphs will not find it here. In the author’s experience, developers who do not understand how the tree
view and the models work together will run into problems once they try to modify the given examples, whereas
developers who have worked with other toolkits that employ the Model/View/Controller-design will find that
the API reference provides all the information they need to know in more condensed form anyway. Those who
disagree may jump straight to the working example code of course.

Please note that the code examples in the following sections do not necessarily demonstrate how GtkTreeView is
used best in a particular situation. There are different ways to achieve the same result, and the examples merely
show those different ways, so that developers are able to decide which one is most suitable for the task at hand.

1.1. Hello World
For the impatient, here is a small treeview ’Hello World’ program (which can also be found in the examples section
of the treeview-tutorial.tar.gz tarball).

/*
* Compile with:
* gcc -o helloworld helloworld.c ‘pkg-config --cflags --libs gtk+-2.0‘
*
*/

#include <gtk/gtk.h>

enum
{

COL_NAME = 0,
COL_AGE,
NUM_COLS

} ;

static GtkTreeModel *
create_and_fill_model (void)
{

GtkListStore *store;
GtkTreeIter iter;

store = gtk_list_store_new (NUM_COLS, G_TYPE_STRING, G_TYPE_UINT);

/* Append a row and fill in some data */
gtk_list_store_append (store, &iter);
gtk_list_store_set (store, &iter,

COL_NAME, "Heinz El-Mann",
COL_AGE, 51,
-1);

/* append another row and fill in some data */
gtk_list_store_append (store, &iter);
gtk_list_store_set (store, &iter,

COL_NAME, "Jane Doe",
COL_AGE, 23,
-1);

/* ... and a third row */

1

Chapter 1. Lists and Trees: the GtkTreeView Widget

gtk_list_store_append (store, &iter);
gtk_list_store_set (store, &iter,

COL_NAME, "Joe Bungop",
COL_AGE, 91,
-1);

return GTK_TREE_MODEL (store);
}

static GtkWidget *
create_view_and_model (void)
{

GtkCellRenderer *renderer;
GtkTreeModel *model;
GtkWidget *view;

view = gtk_tree_view_new ();

/* --- Column #1 --- */

renderer = gtk_cell_renderer_text_new ();
gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW (view),

-1,
"Name",
renderer,
"text", COL_NAME,
NULL);

/* --- Column #2 --- */

renderer = gtk_cell_renderer_text_new ();
gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW (view),

-1,
"Age",
renderer,
"text", COL_AGE,
NULL);

model = create_and_fill_model ();

gtk_tree_view_set_model (GTK_TREE_VIEW (view), model);

/* The tree view has acquired its own reference to the
* model, so we can drop ours. That way the model will
* be freed automatically when the tree view is destroyed */

g_object_unref (model);

return view;
}

int
main (int argc, char **argv)
{

GtkWidget *window;
GtkWidget *view;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
g_signal_connect (window, "delete_event", gtk_main_quit, NULL); /* dirty */

view = create_view_and_model ();

gtk_container_add (GTK_CONTAINER (window), view);

gtk_widget_show_all (window);

gtk_main ();

2

Chapter 1. Lists and Trees: the GtkTreeView Widget

return 0;
}

3

Chapter 2. Components: Model, Renderer, Column, View

The most important concept underlying GtkTreeView is that of complete separation between data and how that
data is displayed on the screen. This is commonly known as Model/View/Controller-design (MVC). Data of
various type (strings, numbers, images, etc.) is stored in a ’model’. The ’view’ is then told which data to display,
where to display it, and how to display it. One of the advantages of this approach is that you can have multiple
views that display the same data (a directory tree for example) in different ways, or in the same way multiple
times, with only one copy of the underlying data. This avoids duplication of data and programming effort if the
same data is re-used in different contexts. Also, when the data in the model is updated, all views automatically
get updated as well.

So, while GtkTreeModel is used to store data, there are other components that determine which data is displayed
in the GtkTreeView and how it is displayed. These components are GtkTreeViewColumn and GtkCellRenderer .
A GtkTreeView is made up of tree view columns. These are the columns that users perceive as columns. They
have a clickable column header with a column title that can be hidden, and can be resized and sorted. Tree view
columns do not display any data, they are only used as a device to represent the user-side of the tree view (sorting
etc.) and serve as packing widgets for the components that do the actual rendering of data onto the screen, namely
the GtkCellRenderer family of objects (I call them ’objects’ because they are not GtkWidgets). There are a number
of different cell renderers that specialise in rendering certain data like strings, pixbufs, or toggle buttons. More on
this later.

Cell renderers are packed into tree view columns to display data. A tree view column needs to contain at least one
cell renderer, but can contain multiple cell renderers. For example, if one wanted to display a ’Filename’ column
where each filename has a little icon on the left indicating the file type, one would pack a GtkCellRendererPixbuf
and a GtkCellRendererText into one tree view column. Packing renderers into a tree view column is similar to
packing widgets into a GtkHBox .

4

Chapter 3. GtkTreeModels for Data Storage: GtkListStore and
GtkTreeStore

It is important to realise what GtkTreeModel is and what it is not. GtkTreeModel is basically just an ’interface’
to the data store, meaning that it is a standardised set of functions that allows a GtkTreeView widget (and the
application programmer) to query certain characteristics of a data store, for example how many rows there are,
which rows have children, and how many children a particular row has. It also provides functions to retrieve data
from the data store, and tell the tree view what type of data is stored in the model. Every data store must implement
the GtkTreeModel interface and provide these functions, which you can use by casting a store to a tree model with
GTK_TREE_MODEL(store) . GtkTreeModel itself only provides a way to query a data store’s characteristics and to
retrieve existing data, it does not provide a way to remove or add rows to the store or put data into the store. This
is done using the specific store’s functions.

Gtk+ comes with two built-in data stores (models): GtkListStore and GtkTreeStore . As the names imply,
GtkListStore is used for simple lists of data items where items have no hierarchical parent-child relationships,
and GtkTreeStore is used for tree-like data structures, where items can have parent-child relationships. A list of
files in a directory would be an example of a simple list structure, whereas a directory tree is an example for a tree
structure. A list is basically just a special case of a tree with none of the items having any children, so one could use
a tree store to maintain a simple list of items as well. The only reason GtkListStore exists is in order to provide
an easier interface that does not need to cater for child-parent relationships, and because a simple list model can
be optimised for the special case where no children exist, which makes it faster and more efficient.

GtkListStore and GtkTreeStore should cater for most types of data an application developer might want to
display in a GtkTreeView . However, it should be noted that GtkListStore and GtkTreeStore have been designed
with flexibility in mind. If you plan to store a lot of data, or have a large number of rows, you should consider
implementing your own custom model that stores and manipulates data your own way and implements the
GtkTreeModel interface. This will not only be more efficient, but probably also lead to saner code in the long run,
and give you more control over your data. See below for more details on how to implement custom models.

Tree model implementations like GtkListStore and GtkTreeStore will take care of the view side for you once
you have configured the GtkTreeView to display what you want. If you change data in the store, the model will
notify the tree view and your data display will be updated. If you add or remove rows, the model will also notify
the store, and your row will appear in or disappear from the view as well.

3.1. How Data is Organised in a Store
A model (data store) has model columns and rows. While a tree view will display each row in the model as a
row in the view, the model’s columns are not to be confused with a view’s columns. A model column represents
a certain data field of an item that has a fixed data type. You need to know what kind of data you want to store
when you create a list store or a tree store, as you can not add new fields later on.

For example, we might want to display a list of files. We would create a list store with two fields: a field that stores
the filename (ie. a string) and a field that stores the file size (ie. an unsigned integer). The filename would be stored
in column 0 of the model, and the file size would be stored in column 1 of the model. For each file we would add
a row to the list store, and set the row’s fields to the filename and the file size.

The GLib type system (GType) is used to indicate what type of data is stored in a model column. These are the
most commonly used types:

• G_TYPE_BOOLEAN

• G_TYPE_INT, G_TYPE_UINT

• G_TYPE_LONG, G_TYPE_ULONG, G_TYPE_INT64, G_TYPE_UINT64 (these are not supported in early gtk+-2.0.x ver-
sions)

• G_TYPE_FLOAT, G_TYPE_DOUBLE

• G_TYPE_STRING- stores a string in the store (makes a copy of the original string)

• G_TYPE_POINTER- stores a pointer value (does not copy any data into the store, just stores the pointer value!)

• GDK_TYPE_PIXBUF- stores a GdkPixbuf in the store (increases the pixbuf’s refcount, see below)

You do not need to understand the type system, it will usually suffice to know the above types, so you can tell
a list store or tree store what kind of data you want to store. Advanced users can derive their own types from
the fundamental GLib types. For simple structures you could register a new boxed type for example, but that is
usually not necessary. G_TYPE_POINTERwill often do as well, you will just need to take care of memory allocation
and freeing yourself then.

5

Chapter 3. GtkTreeModels for Data Storage: GtkListStore and GtkTreeStore

Storing GObject -derived types (most GDK_TYPE_FOOand GTK_TYPE_FOO) is a special case that is dealt with further
below.

Here is an example of how to create a list store:

GtkListStore *list_store;

list_store = gtk_list_store_new (2, G_TYPE_STRING, G_TYPE_UINT);

This creates a new list store with two columns. Column 0 stores a string and column 1 stores an unsigned integer
for each row. At this point the model has no rows yet of course. Before we start to add rows, let’s have a look at
the different ways used to refer to a particular row.

3.2. Refering to Rows: GtkTreeIter, GtkTreePath, GtkTreeRowReference
There are different ways to refer to a specific row. The two you will have to deal with are GtkTreeIter and
GtkTreePath .

3.2.1. GtkTreePath
A GtkTreePath is a comparatively straight-forward way to describe the logical position of a row in the model. As
a GtkTreeView always displays all rows in a model, a tree path always describes the same row in both model and
view.

Figure 3-1. Tree Paths

The picture shows the tree path in string form next to the label. Basically, it just counts the children from the
imaginary root of the tree view. An empty tree path string would specify that imaginary invisible root. Now
’Songs’ is the first child (from the root) and thus its tree path is just "0". ’Videos’ is the second child from the root,
and its tree path is "1". ’oggs’ is the second child of the first item from the root, so its tree path is "0:1". So you just
count your way down from the root to the row in question, and you get your tree path.

To clarify this, a tree path of "3:9:4:1" would basically mean in human language (attention - this is not what it really
means!) something along the lines of: go to the 3rd top-level row. Now go to the 9th child of that row. Proceed
to the 4th child of the previous row. Then continue to the 1st child of that. Now you are at the row this tree path
describes. This is not what it means for Gtk+ though. While humans start counting at 1, computers usually start
counting at 0. So the real meaning of the tree path "3:9:4:1" is: Go to the 4th top-level row. Then go to the 10th child
of that row. Pick the 5th child of that row. Then proceed to the 2nd child of the previous row. Now you are at the
row this tree path describes. :)

The implication of this way of refering to rows is as follows: if you insert or delete rows in the middle or if
the rows are resorted, a tree path might suddenly refer to a completely different row than it refered to before
the insertion/deletion/resorting. This is important to keep in mind. (See the section on GtkTreeRowReference s

6

Chapter 3. GtkTreeModels for Data Storage: GtkListStore and GtkTreeStore

below for a tree path that keeps updating itself to make sure it always refers to the same row when the model
changes).

This effect becomes apparent if you imagine what would happen if we were to delete the row entitled ’funny clips’
from the tree in the above picture. The row ’movie trailers’ would suddenly be the first and only child of ’clips’,
and be described by the tree path that formerly belonged to ’funny clips’, ie. "1:0:0".

You can get a new GtkTreePath from a path in string form using gtk_tree_path_new_from_string , and you can
convert a given GtkTreePath into its string notation with gtk_tree_path_to_string . Usually you will rarely
have to handle the string notation, it is described here merely to demonstrate the concept of tree paths.

Instead of the string notation, GtkTreePath uses an integer array internally. You can get the depth (ie. the nesting
level) of a tree path with gtk_tree_path_get_depth . A depth of 0 is the imaginary invisible root node of the tree
view and model. A depth of 1 means that the tree path describes a top-level row. As lists are just trees without
child nodes, all rows in a list always have tree paths of depth 1. gtk_tree_path_get_indices returns the internal
integer array of a tree path. You will rarely need to operate with those either.

If you operate with tree paths, you are most likely to use a given tree path, and use functions
like gtk_tree_path_up , gtk_tree_path_down , gtk_tree_path_next , gtk_tree_path_prev ,
gtk_tree_path_is_ancestor , or gtk_tree_path_is_descendant . Note that this way you can construct and

operate on tree paths that refer to rows that do not exist in model or view! The only way to check whether a path
is valid for a specific model (ie. the row described by the path exists) is to convert the path into an iter using
gtk_tree_model_get_iter .

GtkTreePath is an opaque structure, with its details hidden from the compiler. If you need to make a copy of a
tree path, use gtk_tree_path_copy .

3.2.2. GtkTreeIter
Another way to refer to a row in a list or tree is GtkTreeIter . A tree iter is just a structure that contains a couple
of pointers that mean something to the model you are using. Tree iters are used internally by models, and they
often contain a direct pointer to the internal data of the row in question. You should never look at the content of a
tree iter and you must not modify it directly either.

All tree models (and therefore also GtkListStore and GtkTreeStore) must support the GtkTreeModel functions
that operate on tree iters (e.g. get the tree iter for the first child of the row specified by a given tree iter, get the first
row in the list/tree, get the n-th child of a given iter etc.). Some of these functions are:

• gtk_tree_model_get_iter_first - sets the given iter to the first top-level item in the list or tree

• gtk_tree_model_iter_next - sets the given iter to the next item at the current level in a list or tree.

• gtk_tree_model_iter_children - sets the first given iter to the first child of the row referenced by the second
iter (not very useful for lists, mostly useful for trees).

• gtk_tree_model_iter_n_children - returns the number of children the row referenced by the provided iter
has. If you pass NULL instead of a pointer to an iter structure, this function will return the number of top-level
rows. You can also use this function to count the number of items in a list store.

• gtk_tree_model_iter_nth_child - sets the first iter to the n-th child of the row referenced by the second iter.
If you pass NULL instead of a pointer to an iter structure as the second iter, you can get the first iter set to the
n-th row of a list.

• gtk_tree_model_iter_parent - sets the first iter to the parent of the row referenced by the second iter (does
nothing for lists, only useful for trees).

Almost all of those functions return TRUEif the requested operation succeeded, and return FALSEotherwise. There
are more functions that operate on iters. Check out the GtkTreeModel API reference for details.

You might notice that there is no gtk_tree_model_iter_prev . This is unlikely to be implemented for a variety
of reasons. It should be fairly simple to write a helper function that provides this functionality though once you
have read this section.

Tree iters are used to retrieve data from the store, and to put data into the store. You also get a tree iter as result if
you add a new row to the store using gtk_list_store_append or gtk_tree_store_append .

Tree iters are often only valid for a short time, and might become invalid if the store changes with some models.
It is therefore usually a bad idea to store tree iters, unless you really know what you are doing. You can use
gtk_tree_model_get_flags to get a model’s flags, and check whether the GTK_TREE_MODEL_ITERS_PERSISTflag
is set (in which case a tree iter will be valid as long as a row exists), yet still it is not advisable to store iter structures
unless you really mean to do that. There is a better way to keep track of a row over time: GtkTreeRowReference

7

Chapter 3. GtkTreeModels for Data Storage: GtkListStore and GtkTreeStore

3.2.3. GtkTreeRowReference
A GtkTreeRowReference is basically an object that takes a tree path, and watches a model for changes. If anything
changes, like rows getting inserted or removed, or rows getting re-ordered, the tree row reference object will keep
the given tree path up to date, so that it always points to the same row as before. In case the given row is removed,
the tree row reference will become invalid.

A new tree row reference can be created with gtk_tree_row_reference_new , given a model and a tree
path. After that, the tree row reference will keep updating the path whenever the model changes. The current
tree path of the row originally refered to when the tree row reference was created can be retrieved with
gtk_tree_row_reference_get_path . If the row has been deleted, NULL will be returned instead of of a tree

path. The tree path returned is a copy, so it will need to be freed with gtk_tree_path_free when it is no longer
needed.

You can check whether the row referenced still exists with gtk_tree_row_reference_valid , and free it with
when no longer needed.

For the curious: internally, the tree row reference connects to the tree model’s "row-inserted" , "row-deleted" ,
and "rows-reordered" signals and updates its internal tree path whenever something happened to the model
that affects the position of the referenced row.

Note that using tree row references entails a small overhead. This is hardly significant for 99.9% of all applications
out there, but when you have multiple thousands of rows and/or row references, this might be something to keep
in mind (because whenever rows are inserted, removed, or reordered, a signal will be sent out and processed for
each row reference).

If you have read the tutorial only up to here so far, it is hard to explain really what tree row references are good
for. An example where tree row references come in handy can be found further below in the section on removing
multiple rows in one go.

In practice, a programmer can either use tree row references to keep track of rows over time, or store tree iters
directly (if, and only if, the model has persistent iters). Both GtkListStore and GtkTreeStore have persistent
iters, so storing iters is possible. However, using tree row references is definitively the Right Way(tm) to do things,
even though it comes with some overhead that might impact performance in case of trees that have a very large
number of rows (in that case it might be preferable to write a custom model anyway though). Especially beginners
might find it easier to handle and store tree row references than iters, because tree row references are handled by
pointer value, which you can easily add to a GList or pointer array, while it is easy to store tree iters in a wrong
way.

3.2.4. Usage
Tree iters can easily be converted into tree paths using gtk_tree_model_get_path , and tree paths can easily be
converted into tree iters using gtk_tree_model_get_iter . Here is an example that shows how to get the iter
from the tree path that is passed to us from the tree view in the "row-activated" signal callback. We need the iter
here to retrieve data from the store

/**
* *
* Converting a GtkTreePath into a GtkTreeIter *
* *
**/

/**
*
* onTreeViewRowActivated: a row has been double-clicked
*
**/

void
onTreeViewRowActivated (GtkTreeView *view, GtkTreePath *path,

GtkTreeViewColumn *col, gpointer userdata)
{
GtkTreeIter iter;

GtkTreeModel *model;

model = gtk_tree_view_get_model(view);

if (gtk_tree_model_get_iter(model, &iter, path))
{

8

Chapter 3. GtkTreeModels for Data Storage: GtkListStore and GtkTreeStore

gchar *name;

gtk_tree_model_get(model, &iter, COL_NAME, &name, -1);

g_print ("The row containing the name ’%s’ has been double-clicked.\n", name);

g_free(name);
}

}

Tree row references reveal the current path of a row with gtk_tree_row_reference_get_path . There is no direct
way to get a tree iter from a tree row reference, you have to retrieve the tree row reference’s path first and then
convert that into a tree iter.

As tree iters are only valid for a short time, they are usually allocated on the stack, as in the following example
(keep in mind that GtkTreeIter is just a structure that contains data fields you do not need to know anything
about):

/**
* *
* Going through every row in a list store *
* *
**/

void
traverse_list_store (GtkListStore *liststore)
{

GtkTreeIter iter;
gboolean valid;

g_return_if_fail (liststore != NULL);

/* Get first row in list store */
valid = gtk_tree_model_get_iter_first(GTK_TREE_MODEL(liststore), &iter);

while (valid)
{

/* ... do something with that row using the iter ... */
/* (Here column 0 of the list store is of type G_TYPE_STRING) */
gtk_list_store_set(liststore, &iter, 0, "Joe", -1);

/* Make iter point to the next row in the list store */
valid = gtk_tree_model_iter_next(GTK_TREE_MODEL(liststore), &iter);

}
}

The code above asks the model to fill the iter structure to make it point to the first row in the list store. If there is
a first row and the list store is not empty, the iter will be set, and gtk_tree_model_get_iter_first will return
TRUE. If there is no first row, it will just return FALSE. If a first row exists, the while loop will be entered and we
change some of the first row’s data. Then we ask the model to make the given iter point to the next row, until there
are no more rows, which is when gtk_tree_model_iter_next returns FALSE. Instead of traversing the list store
we could also have used gtk_tree_model_foreach

3.3. Adding Rows to a Store

3.3.1. Adding Rows to a List Store
Rows are added to a list store with gtk_list_store_append . This will insert a new empty row at the end of the
list. There are other functions, documented in the GtkListStore API reference, that give you more control about
where exactly the new row is inserted, but as they work very similar to gtk_list_store_append and are fairly
straight-forward to use, we will not deal with them here.

Here is a simple example of how to create a list store and add some (empty) rows to it:

GtkListStore *liststore;
GtkTreeIter iter;

9

Chapter 3. GtkTreeModels for Data Storage: GtkListStore and GtkTreeStore

liststore = gtk_list_store_new(1, G_TYPE_STRING);

/* Append an empty row to the list store. Iter will point to the new row */
gtk_list_store_append(liststore, &iter);

/* Append an empty row to the list store. Iter will point to the new row */
gtk_list_store_append(liststore, &iter);

/* Append an empty row to the list store. Iter will point to the new row */
gtk_list_store_append(liststore, &iter);

This in itself is not very useful yet of course. We will add data to the rows in the next section.

3.3.2. Adding Rows to a Tree Store
Adding rows to a tree store works similar to adding rows to a list store, only that gtk_tree_store_append is
the function to use and one more argument is required, namely the tree iter to the parent of the row to insert. If
you supply NULL instead of providing the tree iter of another row, a new top-level row will be inserted. If you
do provide a parent tree iter, the new empty row will be inserted after any already existing children of the parent.
Again, there are other ways to insert a row into the tree store and they are documented in the GtkTreeStore API
reference manual. Another short example:

GtkListStore *treestore;
GtkTreeIter iter, child;

treestore = gtk_tree_store_new(1, G_TYPE_STRING);

/* Append an empty top-level row to the tree store.
* Iter will point to the new row */

gtk_tree_store_append(treestore, &iter, NULL);

/* Append another empty top-level row to the tree store.
* Iter will point to the new row */

gtk_tree_store_append(treestore, &iter, NULL);

/* Append a child to the row we just added.
* Child will point to the new row */

gtk_tree_store_append(treestore, &child, &iter);

/* Get the first row, and add a child to it as well (could have been done
* right away earlier of course, this is just for demonstration purposes) */

if (gtk_tree_model_get_iter_first(GTK_TREE_MODEL(treestore), &iter))
{

/* Child will point to new row */
gtk_tree_store_append(treestore, &child, &iter);

}
else
{

g_error("Oops, we should have a first row in the tree store!\n");
}

3.3.3. Speed Issues when Adding a Lot of Rows
A common scenario is that a model needs to be filled with a lot of rows at some point, either at start-up, or
when some file is opened. An equally common scenario is that this takes an awfully long time even on powerful
machines once the model contains more than a couple of thousand rows, with an exponentially decreasing rate
of insertion. As already pointed out above, writing a custom model might be the best thing to do in this case.
Nevertheless, there are some things you can do to work around this problem and speed things up a bit even with
the stock Gtk+ models:

Firstly, you should detach your list store or tree store from the tree view before doing your mass insertions, then
do your insertions, and only connect your store to the tree view again when you are done with your insertions.
Like this:

...

10

Chapter 3. GtkTreeModels for Data Storage: GtkListStore and GtkTreeStore

model = gtk_tree_view_get_model(GTK_TREE_VIEW(view));

g_object_ref(model); /* Make sure the model stays with us after the tree view unrefs it */

gtk_tree_view_set_model(GTK_TREE_VIEW(view), NULL); /* Detach model from view */

... insert a couple of thousand rows ...

gtk_tree_view_set_model(GTK_TREE_VIEW(view), model); /* Re-attach model to view */

g_object_unref(model);

...

Secondly, you should make sure that sorting is disabled while you are doing your mass insertions, otherwise your
store might be resorted after each and every single row insertion, which is going to be everything but fast.

Thirdly, you should not keep around a lot of tree row references if you have so many rows, because with each
insertion (or removal) every single tree row reference will check whether its path needs to be updated or not.

3.4. Manipulating Row Data
Adding empty rows to a data store is not terribly exciting, so let’s see how we can add or change data in the store.

gtk_list_store_set and gtk_tree_store_set are used to manipulate a given row’s data. There is also
gtk_list_store_set_value and gtk_tree_store_set_value , but those should only be used by people
familiar with GLib’s GValue system.

Both gtk_list_store_set and gtk_tree_store_set take a variable number of arguments, and must be termi-
nated with a -1 argument. The first two arguments are a pointer to the model, and the iter pointing to the row
whose data we want to change. They are followed by a variable number of (column, data) argument pairs, termi-
nated by a -1. The column refers to the model column number and is usually an enum value (to make the code
more readable and to make changes easier). The data should be of the same data type as the model column.

Here is an example where we create a store that stores two strings and one integer for each row:

enum
{

COL_FIRST_NAME = 0,
COL_LAST_NAME,
COL_YEAR_BORN,
NUM_COLS

};

GtkListStore *liststore;
GtkTreeIter iter;

liststore = gtk_list_store_new(NUM_COLS, G_TYPE_STRING, G_TYPE_STRING, G_TYPE_UINT);

/* Append an empty row to the list store. Iter will point to the new row */
gtk_list_store_append(liststore, &iter);

/* Fill fields with some data */
gtk_list_store_set (liststore, &iter,

COL_FIRST_NAME, "Joe",
COL_LAST_NAME, "Average",
COL_YEAR_BORN, (guint) 1970,
-1);

You do not need to worry about allocating and freeing memory for the data to store. The model (or more precisely:
the GLib/GObject GType and GValue system) will take care of that for you. If you store a string, for example, the
model will make a copy of the string and store that. If you then set the field to a new string later on, the model
will automatically free the old string and again make a copy of the new string and store the copy. This applies to
almost all types, be it G_TYPE_STRINGor GDK_TYPE_PIXBUF.

The exception to note is G_TYPE_POINTER. If you allocate a chunk of data or a complex structure and store it
in a G_TYPE_POINTERfield, only the pointer value is stored. The model does not know anything about the size
or content of the data your pointer refers to, so it could not even make a copy if it wanted to, so you need to

11

Chapter 3. GtkTreeModels for Data Storage: GtkListStore and GtkTreeStore

allocate and free the memory yourself in this case. However, if you do not want to do that yourself and want the
model to take care of your custom data for you, then you need to register your own type and derive it from one
of the GLib fundamental types (usually G_TYPE_BOXED). See the GObject GType reference manual for details.
Making a copy of data involves memory allocation and other overhead of course, so one should consider the
performance implications of using a custom GLib type over a G_TYPE_POINTER carefully before taking that
approach. Again, a custom model might be the better alternative, depending on the overall amount of data to be
stored (and retrieved).

3.5. Retrieving Row Data
Storing data is not very useful if it cannot be retrieved again. This is done using gtk_tree_model_get , which
takes similar arguments as gtk_list_store_set or gtk_tree_store_set do, only that it takes (column, pointer)
arguments. The pointer must point to a variable that is of the same type as the data stored in that particular model
column.

Here is the previous example extended to traverse the list store and print out the data stored. As an extra, we use
gtk_tree_model_foreach to traverse the store and retrieve the row number from the GtkTreePath passed to us
in the foreach callback function:

#include <gtk/gtk.h>

enum
{

COL_FIRST_NAME = 0,
COL_LAST_NAME,
COL_YEAR_BORN,
NUM_COLS

};

gboolean
foreach_func (GtkTreeModel *model,

GtkTreePath *path,
GtkTreeIter *iter,
gpointer user_data)

{
gchar *first_name, *last_name, *tree_path_str;
guint year_of_birth;

/* Note: here we use ’iter’ and not ’&iter’, because we did not allocate
* the iter on the stack and are already getting the pointer to a tree iter */

gtk_tree_model_get (model, iter,
COL_FIRST_NAME, &first_name,
COL_LAST_NAME, &last_name,
COL_YEAR_BORN, &year_of_birth,
-1);

tree_path_str = gtk_tree_path_to_string(path);

g_print ("Row %s: %s %s, born %u\n", tree_path_str,
first_name, last_name, year_of_birth);

g_free(tree_path_str);

g_free(first_name); /* gtk_tree_model_get made copies of */
g_free(last_name); /* the strings for us when retrieving them */

return FALSE; /* do not stop walking the store, call us with next row */
}

void
create_and_fill_and_dump_store (void)
{

GtkListStore *liststore;
GtkTreeIter iter;

liststore = gtk_list_store_new(NUM_COLS, G_TYPE_STRING, G_TYPE_STRING, G_TYPE_UINT);

/* Append an empty row to the list store. Iter will point to the new row */

12

Chapter 3. GtkTreeModels for Data Storage: GtkListStore and GtkTreeStore

gtk_list_store_append(liststore, &iter);

/* Fill fields with some data */
gtk_list_store_set (liststore, &iter,

COL_FIRST_NAME, "Joe",
COL_LAST_NAME, "Average",
COL_YEAR_BORN, (guint) 1970,
-1);

/* Append another row, and fill in some data */
gtk_list_store_append(liststore, &iter);

gtk_list_store_set (liststore, &iter,
COL_FIRST_NAME, "Jane",
COL_LAST_NAME, "Common",
COL_YEAR_BORN, (guint) 1967,
-1);

/* Append yet another row, and fill it */
gtk_list_store_append(liststore, &iter);

gtk_list_store_set (liststore, &iter,
COL_FIRST_NAME, "Yo",
COL_LAST_NAME, "Da",
COL_YEAR_BORN, (guint) 1873,
-1);

/* Now traverse the list */

gtk_tree_model_foreach(GTK_TREE_MODEL(liststore), foreach_func, NULL);
}

int
main (int argc, char **argv)
{

gtk_init(&argc, &argv);

create_and_fill_and_dump_store();

return 0;
}

Note that when a new row is created, all fields of a row are set to a default NIL value appropriate for the data type
in question. A field of type G_TYPE_INT will automatically contain the value 0 until it is set to a different value,
and strings and all kind of pointer types will be NULL until set to something else. Those are valid contents for the
model, and if you are not sure that row contents have been set to something, you need to be prepared to handle
NULLpointers and the like in your code.

Run the above program with an additional empty row and look at the output to see this in effect.

3.5.1. Freeing Retrieved Row Data
Unless you are dealing with a model column of type G_TYPE_POINTER, gtk_tree_model_get will always make
copies of the data retrieved.

In the case of strings, this means that you need to g_free the string returned when you don’t need it any longer,
as in the example above.

If you retrieve a GObject such as a GdkPixbuf from the store, gtk_tree_model_get will automatically add a
reference to it, so you need to call g_object_unref on the retrieved object once you are done with it:

...

GdkPixbuf *pixbuf;

gtk_tree_model_get (model, &iter,
COL_PICTURE, &pixbuf,
NULL);

13

Chapter 3. GtkTreeModels for Data Storage: GtkListStore and GtkTreeStore

if (pixbuf != NULL)
{

do_something_with_pixbuf (pixbuf);
g_object_unref (pixbuf);

}

...

Similarly, GBoxed-derived types retrieved from a model need to be freed with g_boxed_free when done with
them (don’t worry if you have never heard of GBoxed).

If the model column is of type G_TYPE_POINTER, gtk_tree_model_get will simply copy the pointer value, but not
the data (even if if it wanted to, it couldn’t copy the data, because it would not know how to copy it or what to
copy exactly). If you store pointers to objects or strings in a pointer column (which you should not do unless you
really know what you are doing and why you are doing it), you do not need to unref or free the returned values as
described above, because gtk_tree_model_get would not know what kind of data they are and therefore won’t
ref or copy them on retrieval.

3.6. Removing Rows
Rows can easily be removed with gtk_list_store_remove and gtk_tree_store_remove . The removed row
will automatically be removed from the tree view as well, and all data stored will automatically be freed, with the
exception of G_TYPE_POINTERcolumns (see above).

Removing a single row is fairly straight forward: you need to get the iter that identifies the row you want to
remove, and then use one of the above functions. Here is a simple example that removes a row when you double-
click on it (bad from a user interface point of view, but then it is just an example):

static void
onRowActivated (GtkTreeView *view,

GtkTreePath *path,
GtkTreeViewColumn *col,
gpointer user_data)

{
GtkTreeModel *model;
GtkTreeIter iter;

g_print ("Row has been double-clicked. Removing row.\n");

model = gtk_tree_view_get_model(view);

if (!gtk_tree_model_get_iter(model, &iter, path))
return; /* path describes a non-existing row - should not happen */

gtk_list_store_remove(GTK_LIST_STORE(model), &iter);
}

void
create_treeview (void)
{

...
g_signal_connect(treeview, "row-activated", G_CALLBACK(onRowActivated), NULL);
...

}

Note: gtk_list_store_remove and gtk_tree_store_remove both have slightly different semantics in Gtk+-
2.0 and Gtk+-2.2 and later. In Gtk+-2.0, both functions do not return a value, while in later Gtk+ versions those
functions return either TRUEor FALSE to indicate whether the iter given has been set to the next valid row (or
invalidated if there is no next row). This is important to keep in mind when writing code that is supposed to work
with all Gtk+-2.x versions. In that case you should just ignore the value returned (as in the call above) and check
the iter with gtk_list_store_iter_is_valid if you need it.

If you want to remove the n-th row from a list (or the n-th child of a tree node), you have two approaches: either
you first create a GtkTreePath that describes that row and then turn it into an iter and remove it; or you take the

14

Chapter 3. GtkTreeModels for Data Storage: GtkListStore and GtkTreeStore

iter of the parent node and use gtk_tree_model_iter_nth_child (which will also work for list stores if you use
NULLas the parent iter. Of course you could also start with the iter of the first top-level row, and then step-by-step
move it to the row you want, although that seems a rather awkward way of doing it.

The following code snippet will remove the n-th row of a list if it exists:

/**
*
* list_store_remove_nth_row
*
* Removes the nth row of a list store if it exists.
*
* Returns TRUE on success or FALSE if the row does not exist.
*
**/

gboolean
list_store_remove_nth_row (GtkListStore *store, gint n)
{

GtkTreeIter iter;

g_return_val_if_fail (GTK_IS_LIST_STORE(store), FALSE);

/* NULL means the parent is the virtual root node, so the
* n-th top-level element is returned in iter, which is
* the n-th row in a list store (as a list store only has
* top-level elements, and no children) */

if (gtk_tree_model_iter_nth_child(GTK_TREE_MODEL(store), &iter, NULL, n))
{

gtk_list_store_remove(store, &iter);
return TRUE;

}

return FALSE;
}

3.7. Removing Multiple Rows
Removing multiple rows at once can be a bit tricky at times, and requires some thought on how to do this best.
For example, it is not possible to traverse a store with gtk_tree_model_foreach , check in the callback function
whether the given row should be removed and then just remove it by calling one of the stores’ remove functions.
This will not work, because the model is changed from within the foreach loop, which might suddenly invalidate
formerly valid tree iters in the foreach function, and thus lead to unpredictable results.

You could traverse the store in a while loop of course, and call gtk_list_store_remove or
gtk_tree_store_remove whenever you want to remove a row, and then just continue if the remove functions
returns TRUE(meaning that the iter is still valid and now points to the row after the row that was removed).
However, this approach will only work with Gtk+-2.2 or later and will not work if you want your programs to
compile and work with Gtk+-2.0 as well, for the reasons outlined above (in Gtk+-2.0 the remove functions did
not set the passed iter to the next valid row). Also, while this approach might be feasable for a list store, it gets a
bit awkward for a tree store.

Here is an example for an alternative approach to removing multiple rows in one go (here we want to remove all
rows from the store that contain persons that have been born after 1980, but it could just as well be all selected
rows or some other criterion):

/**
*
* Removing multiple rows in one go
*
**/

...

gboolean

15

Chapter 3. GtkTreeModels for Data Storage: GtkListStore and GtkTreeStore

foreach_func (GtkTreeModel *model,
GtkTreePath *path,
GtkTreeIter *iter,
GList **rowref_list)

{
guint year_of_birth;

g_assert (rowref_list != NULL);

gtk_tree_model_get (model, iter, COL_YEAR_BORN, &year_of_birth, -1);

if (year_of_birth > 1980)
{

GtkTreeRowReference *rowref;

rowref = gtk_tree_row_reference_new(model, path);

*rowref_list = g_list_append(*rowref_list, rowref);
}

return FALSE; /* do not stop walking the store, call us with next row */
}

void
remove_people_born_after_1980 (void)
{

GList *rr_list = NULL; /* list of GtkTreeRowReferences to remove */
GList *node;

gtk_tree_model_foreach(GTK_TREE_MODEL(store),
(GtkTreeModelForeachFunc) foreach_func,
&rr_list);

for (node = rr_list; node != NULL; node = node->next)
{

GtkTreePath *path;

path = gtk_tree_row_reference_get_path((GtkTreeRowReference*)node->data);

if (path)
{

GtkTreeIter iter;

if (gtk_tree_model_get_iter(GTK_TREE_MODEL(store), &iter, path))
{

gtk_list_store_remove(store, &iter);
}

/* FIXME/CHECK: Do we need to free the path here? */
}

}

g_list_foreach(rr_list, (GFunc) gtk_tree_row_reference_free, NULL);
g_list_free(rr_list);

}

...

gtk_list_store_clear and gtk_tree_store_clear come in handy if you want to remove all rows.

16

Chapter 3. GtkTreeModels for Data Storage: GtkListStore and GtkTreeStore

3.8. Storing GObjects (Pixbufs etc.)
A special case are GObject types, like GDK_TYPE_PIXBUF, that get stored in a list or tree store. The store will not
make a copy of the object, rather it will increase the object’s refcount. The store will then unref the object again if
it is no longer needed (ie. a new object is stored in the old object’s place, the current value is replaced by NULL,
the row is removed, or the store is destroyed).

From a developer perspective, this means that you need to g_object_unref an object that you have just added
to the store if you want the store to automatically dispose of it when no longer needed. This is because on object
creation, the object has an initial refcount of 1, which is "your" refcount, and the object will only be destroyed when
it reaches a refcount of 0. Here is the life cycle of a pixbuf:

GtkListStore *list_store;
GtkTreeIter iter;
GdkPixbuf *pixbuf;
GError *error = NULL;

list_store = gtk_list_store_new (2, GDK_TYPE_PIXBUF, G_TYPE_STRING);

pixbuf = gdk_pixbuf_new_from_file("icon.png", &error);

/* pixbuf has a refcount of 1 after creation */

if (error)
{

g_critical ("Could not load pixbuf: %s\n", error->message);
g_error_free(error);
return;

}

gtk_list_store_append(list_store, &iter);

gtk_list_store_set(list_store, &iter, 0, pixbuf, 1, "foo", -1);

/* pixbuf has a refcount of 2 now, as the list store has added its own reference */

g_object_unref(pixbuf);

/* pixbuf has a refcount of 1 now that we have released our initial reference */

/* we don’t want an icon in that row any longer */
gtk_list_store_set(list_store, &iter, 0, NULL, -1);

/* pixbuf has automatically been destroyed after its refcount has reached 0.
* The list store called g_object_unref() on the pixbuf when it replaced
* the object in the store with a new value (NULL). */

Having learned how to add, manipulate, and retrieve data from a store, the next step is to get that data displayed
in a GtkTreeView widget.

3.9. Storing Data Structures: of Pointers, GBoxed Types, and GObject (TODO)
Unfinished chapter.

17

Chapter 4. Creating a Tree View

In order to display data in a tree view widget, we need to create one first, and we need to instruct it where to get
the data to display from.

A new tree view is created with:

GtkWidget *view;

view = gtk_tree_view_new();

4.1. Connecting Tree View and Model
Before we proceed to the next section where we display data on the screen, we need connect our data store to the
tree view, so it knows where to get the data to display from. This is achieved with gtk_tree_view_set_model ,
which will by itself do very little. However, it is a prerequisite for what we do in the following sections.
gtk_tree_view_new_with_model is a convenience function for the previous two.

gtk_tree_view_get_model will return the model that is currently attached to a given tree view, which is particu-
larly useful in callbacks where you only get passed the tree view widget (after all, we do not want to go down the
road of global variables, which will inevitably lead to the Dark Side, do we?).

4.1.1. Reference counting
Tree models like GtkListStore and GtkTreeStore are GObjects and have a reference count of 1 after creation.
The tree view will add its own reference to the model when you add the model with gtk_tree_view_set_model ,
and will unref it again when you replace the model with another model, unset the model by passing NULL as a
model, or when the tree view is destroyed. 1

This means that you need to take care of "your" reference yourself, otherwise the model will not be destroyed
properly when you disconnect it from the tree view, and its memory will not be freed (which does not matter
much if the same model is connected to the tree view from application start to end). If you plan to use the same
model for a tree view for the whole duration of the application, you can get rid of "your" reference right after you
have connected the model to the view - then the model will be destroyed automatically when the tree view is
destroyed (which will be automatically destroyed when the window it is in is destroyed):

GtkListStore *liststore;
GtkWidget *view;

view = gtk_tree_view_new();

liststore = gtk_list_store_new(1, G_TYPE_STRING);

gtk_tree_view_set_model(GTK_TREE_VIEW(view), GTK_TREE_MODEL(liststore));

g_object_unref(liststore);

/* Now the model will be destroyed when the tree view is destroyed */

4.2. Tree View Look and Feel
There are a couple of ways to influence the look and feel of the tree view. You can hide or show
column headers with gtk_tree_view_set_headers_visible , and set them clickable or not with
gtk_tree_view_set_headers_clickable (which will be done automatically for you if you enable sorting).

gtk_tree_view_set_rules_hint will enable or disable rules in the tree view. 2 As the function name implies, this
setting is only a hint; in the end it depends on the active Gtk+ theme engine if the tree view shows ruled lines or
not. Users seem to have strong feelings about rules in tree views, so it is probably a good idea to provide an option
somewhere to disable rule hinting if you set it on tree views (but then, people also seem to have strong feelings
about options abundance and ’sensible’ default options, so whatever you do will probably upset someone at some
point).

The expander column can be set with gtk_tree_view_set_expander_column . This is the column where child
elements are indented with respect to their parents, and where rows with children have an ’expander’ arrow with
which a node’s children can be collapsed (hidden) or expanded (shown). By default, this is the first column.

18

Chapter 4. Creating a Tree View

Notes
1. ’Reference counting’ means that an object has a counter that can be increased or decreased (ref-ed and unref-

ed). If the counter is unref-ed to 0, the object is automatically destroyed. This is useful, because other objects
or application programmers only have to think about whether they themselves are still using that object or not,
without knowing anything about others also using it. The object is simply automatically destroyed when no
one is using it any more.

2. ’Rules’ means that every second line of the tree view has a shaded background, which makes it easier to see
which cell belongs to which row in tree views that have a lot of columns.

19

Chapter 5. Mapping Data to the Screen: GtkTreeViewColumn and
GtkCellRenderer

As outlined above, tree view columns represent the visible columns on the screen that have a column header with
a column name and can be resized or sorted. A tree view is made up of tree view columns, and you need at least
one tree view column in order to display something in the tree view. Tree view columns, however, do not display
anything by themselves, this is done by specialised GtkCellRenderer objects. Cell renderers are packed into tree
view columns much like widgets are packed into GtkHBoxes .

Here is a diagram (courtesy of Owen Taylor) that pictures the relationship between tree view columns and cell
renderers:

Figure 5-1. Cell Renderer Properties

In the above diagram, both ’Country’ and ’Representative’ are tree view columns, where the ’Country’ and ’Rep-
resentative’ labels are the column headers. The ’Country’ column contains two cell renderers, one to display the
flag icons, and one to display the country name. The ’Representative’ column only contains one cell renderer to
display the representative’s name.

5.1. Cell Renderers
Cell renderers are objects that are responsible for the actual rendering of data within a GtkTreeViewColumn . They
are basically just GObjects (ie. not widgets) that have certain properties, and those properties determine how a
single cell is drawn.

In order to draw cells in different rows with different content, a cell renderer’s properties need to be set accordingly
for each single row/cell to render. This is done either via attributes or cell data functions (see below). If you set
up attributes, you tell Gtk which model column contains the data from which a property should be set before
rendering a certain row. Then the properties of a cell renderer are set automatically according to the data in the
model before each row is rendered. Alternatively, you can set up cell data functions, which are called for each

20

Chapter 5. Mapping Data to the Screen: GtkTreeViewColumn and GtkCellRenderer

row to be rendererd, so that you can manually set the properties of the cell renderer before it is rendered. Both
approaches can be used at the same time as well. Lastly, you can set a cell renderer property when you create the
cell renderer. That way it will be used for all rows/cells to be rendered (unless it is changed later of course).

Different cell renderers exist for different purposes:

• GtkCellRendererText renders strings or numbers or boolean values as text ("Joe", "99.32", "true")

• GtkCellRendererPixbuf is used to display images; either user-defined images, or one of the stock icons that
come with Gtk+.

• GtkCellRendererToggle displays a boolean value in form of a check box or as a radio button.

• GtkCellEditable is a special cell that implements editable cells (ie. GtkEntry or GtkSpinbutton in a treeview).
This is not a cell renderer! If you want to have editable text cells, use GtkCellRendererText and make sure the
"editable" property is set. GtkCellEditable is only used by implementations of editable cells and widgets that
can be inside of editable cells. You are unlikely to ever need it.

Contrary to what one may think, a cell renderer does not render just one single cell, but is responsible for rendering
part or whole of a tree view column for each single row. It basically starts in the first row and renders its part of
the column there. Then it proceeds to the next row and renders its part of the column there again. And so on.

How does a cell renderer know what to render? A cell renderer object has certain ’properties’ that are documented
in the API reference (just like most other objects, and widgets). These properties determine what the cell renderer
is going to render and how it is going to be rendered. Whenever the cell renderer is called upon to render a certain
cell, it looks at its properties and renders the cell accordingly. This means that whenever you set a property or
change a property of the cell renderer, this will affect all rows that are rendered after the change, until you change
the property again.

Here is a diagram (courtesy of Owen Taylor) that tries to show what is going on when rows are rendered:

Figure 5-2. GtkTreeViewColumns and GtkCellRenderers

21

Chapter 5. Mapping Data to the Screen: GtkTreeViewColumn and GtkCellRenderer

The above diagram shows the process when attributes are used. In the example, a text cell renderer’s "text"
property has been linked to the first model column. The "text" property contains the string to be rendered. The
"foreground" property, which contains the colour of the text to be shown, has been linked to the second model
column. Finally, the "strikethrough" property, which determines whether the text should be with a horizontal
line that strikes through the text, has been connected to the third model column (of type G_TYPE_BOOLEAN).

With this setup, the cell renderer’s properties are ’loaded’ from the model before each cell is rendered.

Here is a silly and utterly useless little example that demonstrates this behaviour, and introduces some of the most
commonly used properties of GtkCellRendererText :

#include <gtk/gtk.h>

enum
{

COL_FIRST_NAME = 0,
COL_LAST_NAME,
NUM_COLS

} ;

static GtkTreeModel *
create_and_fill_model (void)
{

GtkTreeStore *treestore;
GtkTreeIter toplevel, child;

treestore = gtk_tree_store_new(NUM_COLS, G_TYPE_STRING, G_TYPE_STRING);

/* Append a top level row and leave it empty */
gtk_tree_store_append(treestore, &toplevel, NULL);

/* Append a second top level row, and fill it with some data */
gtk_tree_store_append(treestore, &toplevel, NULL);
gtk_tree_store_set(treestore, &toplevel,

COL_FIRST_NAME, "Joe",
COL_LAST_NAME, "Average",
-1);

/* Append a child to the second top level row, and fill in some data */
gtk_tree_store_append(treestore, &child, &toplevel);
gtk_tree_store_set(treestore, &child,

COL_FIRST_NAME, "Jane",
COL_LAST_NAME, "Average",
-1);

return GTK_TREE_MODEL(treestore);
}

static GtkWidget *
create_view_and_model (void)
{

GtkTreeViewColumn *col;
GtkCellRenderer *renderer;
GtkWidget *view;
GtkTreeModel *model;

view = gtk_tree_view_new();

/* --- Column #1 --- */

col = gtk_tree_view_column_new();

gtk_tree_view_column_set_title(col, "First Name");

/* pack tree view column into tree view */
gtk_tree_view_append_column(GTK_TREE_VIEW(view), col);

renderer = gtk_cell_renderer_text_new();

/* pack cell renderer into tree view column */
gtk_tree_view_column_pack_start(col, renderer, TRUE);

22

Chapter 5. Mapping Data to the Screen: GtkTreeViewColumn and GtkCellRenderer

/* set ’text’ property of the cell renderer */
g_object_set(renderer, "text", "Boooo!", NULL);

/* --- Column #2 --- */

col = gtk_tree_view_column_new();

gtk_tree_view_column_set_title(col, "Last Name");

/* pack tree view column into tree view */
gtk_tree_view_append_column(GTK_TREE_VIEW(view), col);

renderer = gtk_cell_renderer_text_new();

/* pack cell renderer into tree view column */
gtk_tree_view_column_pack_start(col, renderer, TRUE);

/* set ’cell-background’ property of the cell renderer */
g_object_set(renderer,

"cell-background", "Orange",
"cell-background-set", TRUE,
NULL);

model = create_and_fill_model();

gtk_tree_view_set_model(GTK_TREE_VIEW(view), model);

g_object_unref(model); /* destroy model automatically with view */

gtk_tree_selection_set_mode(gtk_tree_view_get_selection(GTK_TREE_VIEW(view)),
GTK_SELECTION_NONE);

return view;
}

int
main (int argc, char **argv)
{

GtkWidget *window;
GtkWidget *view;

gtk_init(&argc, &argv);

window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
g_signal_connect(window, "delete_event", gtk_main_quit, NULL); /* dirty */

view = create_view_and_model();

gtk_container_add(GTK_CONTAINER(window), view);

gtk_widget_show_all(window);

gtk_main();

return 0;
}

The above code should produce something looking like this:

23

Chapter 5. Mapping Data to the Screen: GtkTreeViewColumn and GtkCellRenderer

Figure 5-3. Persistent Cell Renderer Properties

It looks like the tree view display is partly correct and partly incomplete. On the one hand the tree view renders the
correct number of rows (note how there is no orange on the right after row 3), and it displays the hierarchy correctly
(on the left), but it does not display any of the data that we have stored in the model. This is because we have made
no connection between what the cell renderers should render and the data in the model. We have simply set some
cell renderer properties on start-up, and the cell renderers adhere to those set properties meticulously.

There are two different ways to connect cell renderers to data in the model: attributes and cell data functions.

5.2. Attributes
An attribute is a connection between a cell renderer property and a field/column in the model. Whenever a cell is
to be rendered, a cell renderer property will be set to the values of the specified model column of the row that is
to be rendered. It is very important that the column’s data type is the same type that a property takes according to
the API reference manual. Here is some code to look at:

...

col = gtk_tree_view_column_new();

renderer = gtk_cell_renderer_text_new();

gtk_tree_view_column_pack_start(col, renderer, TRUE);

gtk_tree_view_column_add_attribute(col, renderer, "text", COL_FIRST_NAME);

...

This means that the text cell renderer property "text" will be set to the string in model column
COL_FIRST_NAME of each row to be drawn. It is important to internalise the difference between
gtk_tree_view_column_add_attribute and g_object_set : g_object_set sets a property to a certain value,

while gtk_tree_view_column_add_attribute sets a property to whatever is in the specified _model column_ at
the time of rendering.

Again, when setting attributes it is very important that the data type stored in a model column is the same as
the data type that a property requires as argument. Check the API reference manual to see the data type that is
required for each property. When reading through the example a bit further above, you might have noticed that
we set the "cell-background" property of a GtkCellRendererText , even though the API documentation does
not list such a property. We can do this, because GtkCellRendererText is derived from GtkCellRenderer , which
does in fact have such a property. Derived classes inherit the properties of their parents. This is the same as with
widgets that you can cast into one of their ancestor classes. The API reference has an object hierarchy that shows
you which classes a widget or some other object is derived from.

There are two more noteworthy things about GtkCellRenderer properties: one is that sometimes there
are different properties which do the same, but take different arguments, such as the "foreground" and
"foreground-gdk" properties of GtkCellRendererText (which specify the text colour). The "foreground"
property take a colour in string form, such as "Orange" or "CornflowerBlue", whereas "foreground-gdk" takes a
GdkColor argument. It is up to you to decide which one to use - the effect will be the same. The other thing
worth mentioning is that most properties have a "foo-set" property taking a boolean value as argument, such
as "foreground-set" . This is useful when you want to have a certain setting have an effect or not. If you set

24

Chapter 5. Mapping Data to the Screen: GtkTreeViewColumn and GtkCellRenderer

the "foreground" property, but set "foreground-set" to FALSE, then your foreground color setting will be
disregarded. This is useful in cell data functions (see below), or, for example, if you want set the foreground
colour to a certain value at start-up, but only want this to be in effect in some columns, but not in others (in
which case you could just connect the "foreground-set" property to a model column of type G_TYPE_BOOLEAN
with gtk_tree_view_column_add_attribute .

Setting column attributes is the most straight-forward way to get your model data to be displayed. This is usually
used whenever you want the data in the model to be displayed exactly as it is in the model.

Another way to get your model data displayed on the screen is to set up cell data functions.

5.3. Cell Data Functions
A cell data function is a function that is called for a specific cell renderer for each single row before that row
is rendered. It gives you maximum control over what exactly is going to be rendered, as you can set the cell
renderer’s properties just like you want to have them. Remember not only to set a property if you want it to be
active, but also to unset a property if it should not be active (and it might have been set in the previous row).

Cell data functions are often used if you want more fine-grained control over what is to be displayed, or if the
standard way to display something is not quite like you want it to be. A case in point are floating point numbers.
If you want floating point numbers to be displayed in a certain way, say with only one digit after the colon/comma,
then you need to use a cell data function. Use gtk_tree_view_column_set_cell_data_func to set up a cell data
function for a particular cell renderer. Here is an example:

enum
{

COLUMN_NAME = 0,
COLUMN_AGE_FLOAT,
NUM_COLS

};

...

void
age_cell_data_function (GtkTreeViewColumn *col,

GtkCellRenderer *renderer,
GtkTreeModel *model,
GtkTreeIter *iter,
gpointer user_data)

{
gfloat age;
gchar buf[20];

gtk_tree_model_get(model, iter, COLUMN_AGE_FLOAT, &age, -1);

g_snprintf(buf, sizeof(buf), "%.1f", age);

g_object_set(renderer, "text", buf, NULL);
}

...

liststore = gtk_list_store_new(NUM_COLS, G_TYPE_STRING, G_TYPE_FLOAT);

col = gtk_tree_view_column_new();

cell = gtk_cell_renderer_text_new();

gtk_tree_view_column_pack_start(col, cell, TRUE);

gtk_tree_view_column_set_cell_data_func(col, cell, age_cell_data_func, NULL, NULL);

...

for each row to be rendered by this particular cell renderer, the cell data function is going to be called, which
then retrieves the float from the model, and turns it into a string where the float has only one digit after the
colon/comma, and renders that with the text cell renderer.

25

Chapter 5. Mapping Data to the Screen: GtkTreeViewColumn and GtkCellRenderer

This is only a simple example, you can make cell data functions a lot more complicated if you want to. As always,
there is a trade-off to keep in mind though. Your cell data function is going to be called every single time a cell in
that (renderer) column is going to be rendered. Go and check how often this function is called in your program if
you ever use one. If you do time-consuming operations within a cell data function, things are not going to be fast,
especially if you have a lot of rows. The alternative in this case would have been to make an additional column
COLUMN_AGE_FLOAT_STRING of type G_TYPE_STRING, and to set the float in string form whenever you set
the float itself in a row, and then hook up the string column to a text cell renderer using attributes. This way the
float to string conversion would only need to be done once. This is a cpu cycles / memory trade-off, and it depends
on your particular case which one is more suitable. Things you should probably not do is to convert long strings
into UTF8 format in a cell data function, for example.

You might notice that your cell data function is called at times even for rows that are not visible at the moment.
This is because the tree view needs to know its total height, and in order to calculate this it needs to know the
height of each and every single row, and it can only know that by having it measured, which is going to be slow
when you have a lot of rows with different heights (if your rows all have the same height, there should not be any
visible delay though).

5.4. GtkCellRendererText and Integer, Boolean and Float Types
It has been said before that, when using attributes to connect data from the model to a cell renderer property, the
data in the model column specified in gtk_tree_view_column_add_attribute must always be of the same type
as the data type that the property requires.

This is usually true, but there is an exception: if you use gtk_tree_view_column_add_attribute to
connect a text cell renderer’s "text" property to a model column, the model column does not need to be of
G_TYPE_STRING, it can also be one of most other fundamental GLib types, e.g. G_TYPE_BOOLEAN, G_TYPE_INT,
G_TYPE_UINT, G_TYPE_LONG, G_TYPE_ULONG, G_TYPE_INT64, G_TYPE_UINT64, G_TYPE_FLOAT, or G_TYPE_DOUBLE.
The text cell renderer will automatically display the values of these types correctly in the tree view. For example:

enum
{

COL_NAME = 0,
COL_YEAR_BORN,
NUM_COLS

};

liststore = gtk_list_store_new(NUM_COLS, G_TYPE_STRING, G_TYPE_UINT);

...

cell = gtk_cell_renderer_text_new();
col = gtk_tree_view_column_new();
gtk_tree_view_column_add_attribute(col, cell, "text", COL_YEAR_BORN);

...

Even though the "text" property would require a string value, we use a model column of an integer type when
setting attributes. The integer will then automatically be converted into a string before the cell renderer property
is set 1.

If you are using a floating point type, ie. G_TYPE_FLOATor G_TYPE_DOUBLE, there is no way to tell the text cell
renderer how many digits after the floating point (or comma) should be rendered. If you only want a certain
amount of digits after the point/comma, you will need to use a cell data function.

5.5. GtkCellRendererText, UTF8, and pango markup
All text used in Gtk+-2.0 widgets needs to be in UTF8 encoding, and GtkCellRendererText is no exception. Text
in plain ASCII is automatically valid UTF8, but as soon as you have special characters that do not exist in plain
ASCII (usually characters that are not used in the English language alphabet), they need to be in UTF8 encoding.
There are many different character encodings that all specify different ways to tell the computer which character
is meant. Gtk+-2.0 uses UTF8, and whenever you have text that is in a different encoding, you need to convert it to
UTF8 encoding first, using one of the GLib g_convert family of functions. If you only use text input from other
Gtk+ widgets, you are on the safe side, as they will return all text in UTF8 as well.

However, if you use ’external’ sources of text input, then you must convert that text from the text’s encoding
(or the user’s locale) to UTF8, or it will not be rendered correctly (either not at all, or it will be cut off after the

26

Chapter 5. Mapping Data to the Screen: GtkTreeViewColumn and GtkCellRenderer

first invalid character). Filenames are especially hard, because there is no indication whatsoever what character
encoding a filename is in (it might have been created when the user was using a different locale, so filename
encoding is basically unreliable and broken). You may want to convert to UTF8 with fallback characters in that
case. You can check whether a string is valid UTF8 with g_utf8_validate . You should, in this author’s opinion
at least, put these checks into your code at crucial places wherever it is not affecting performance, especially if you
are an English-speaking programmer that has little experience with non-English locales. It will make it easier for
others and yourself to spot problems with non-English locales later on.

In addition to the "text" property, GtkCellRendererText also has a "markup" property that takes text with pango
markup as input. Pango markup allows you to place special tags into a text string that affect the style the text
is rendered (see the pango documentation). Basically you can achieve everything you can achieve with the other
properties also with pango markup (only that using properties is more efficient and less messy). Pango markup
has one distinct advantage though that you cannot achieve with text cell renderer properties: with pango markup,
you can change the text style in the middle of the text, so you could, for example, render one part of a text string
in bold print, and the rest of the text in normal. Here is an example of a string with pango markup:

"You can have text in bold or in a different color"

When using the "markup" property, you need to take into account that the "markup" and "text" properties do not
seem to be mutually exclusive (I suppose this could be called a bug). In other words: whenever you set "markup"
(and have used the "text" property before), set the "text" property to NULL, and vice versa. Example:

...

void
foo_cell_data_function (...)
{

...
if (foo->is_important)

g_object_set(renderer, "markup", "important", "text", NULL, NULL);
else

g_object_set(renderer, "markup", NULL, "text", "not important", NULL);
...

}

...

Another thing to keep in mind when using pango markup text is that you might need to escape text if you con-
struct strings with pango markup on the fly using random input data. For example:

...

void
foo_cell_data_function (...)
{

gchar *markuptxt;

...
/* This might be problematic if artist_string or title_string

* contain markup characters/entities: */
markuptxt = g_strdup_printf("%s - <i>%s</i>",

artist_string, title_string);
...
g_object_set(renderer, "markup", markuptxt, "text", NULL, NULL);
...
g_free(markuptxt);

}

...

The above example will not work if artist_string is "Simon & Garfunkel" for example, because the & character
is one of the characters that is special. They need to be escaped, so that pango knows that they do not refer to
any pango markup, but are just characters. In this case the string would need to be "Simon & Garfunkel" in
order to make sense in between the pango markup in which it is going to be pasted. You can escape a string with
g_markup_escape (and you will need to free the resulting newly-allocated string again with g_free).

It is possible to combine both pango markup and text cell renderer properties. Both will be ’added’ together to
render the string in question, only that the text cell renderer properties will be applied to the whole string. If you
set the "markup" property to normal text without any pango markup, it will render as normal text just as if you

27

Chapter 5. Mapping Data to the Screen: GtkTreeViewColumn and GtkCellRenderer

had used the "text" property. However, as opposed to the "text" property, special characters in the "markup"
property text would still need to be escaped, even if you do not use pango markup in the text.

5.6. A Working Example
Here is our example from the very beginning again (with an additional column though), only that the contents
of the model are rendered properly on the screen this time. Both attributes and a cell data function are used for
demonstration purposes.

#include <gtk/gtk.h>

enum
{

COL_FIRST_NAME = 0,
COL_LAST_NAME,
COL_YEAR_BORN,
NUM_COLS

} ;

static GtkTreeModel *
create_and_fill_model (void)
{

GtkTreeStore *treestore;
GtkTreeIter toplevel, child;

treestore = gtk_tree_store_new(NUM_COLS,
G_TYPE_STRING,
G_TYPE_STRING,
G_TYPE_UINT);

/* Append a top level row and leave it empty */
gtk_tree_store_append(treestore, &toplevel, NULL);
gtk_tree_store_set(treestore, &toplevel,

COL_FIRST_NAME, "Maria",
COL_LAST_NAME, "Incognito",
-1);

/* Append a second top level row, and fill it with some data */
gtk_tree_store_append(treestore, &toplevel, NULL);
gtk_tree_store_set(treestore, &toplevel,

COL_FIRST_NAME, "Jane",
COL_LAST_NAME, "Average",
COL_YEAR_BORN, (guint) 1962,
-1);

/* Append a child to the second top level row, and fill in some data */
gtk_tree_store_append(treestore, &child, &toplevel);
gtk_tree_store_set(treestore, &child,

COL_FIRST_NAME, "Janinita",
COL_LAST_NAME, "Average",
COL_YEAR_BORN, (guint) 1985,
-1);

return GTK_TREE_MODEL(treestore);
}

void
age_cell_data_func (GtkTreeViewColumn *col,

GtkCellRenderer *renderer,
GtkTreeModel *model,
GtkTreeIter *iter,
gpointer user_data)

{
guint year_born;
guint year_now = 2003; /* to save code not relevant for the example */
gchar buf[64];

gtk_tree_model_get(model, iter, COL_YEAR_BORN, &year_born, -1);

28

Chapter 5. Mapping Data to the Screen: GtkTreeViewColumn and GtkCellRenderer

if (year_born <= year_now && year_born > 0)
{

guint age = year_now - year_born;

g_snprintf(buf, sizeof(buf), "%u years old", age);

g_object_set(renderer, "foreground-set", FALSE, NULL); /* print this normal */
}
else
{

g_snprintf(buf, sizeof(buf), "age unknown");

/* make red */
g_object_set(renderer, "foreground", "Red", "foreground-set", TRUE, NULL);

}

g_object_set(renderer, "text", buf, NULL);
}

static GtkWidget *
create_view_and_model (void)
{

GtkTreeViewColumn *col;
GtkCellRenderer *renderer;
GtkWidget *view;
GtkTreeModel *model;

view = gtk_tree_view_new();

/* --- Column #1 --- */

col = gtk_tree_view_column_new();

gtk_tree_view_column_set_title(col, "First Name");

/* pack tree view column into tree view */
gtk_tree_view_append_column(GTK_TREE_VIEW(view), col);

renderer = gtk_cell_renderer_text_new();

/* pack cell renderer into tree view column */
gtk_tree_view_column_pack_start(col, renderer, TRUE);

/* connect ’text’ property of the cell renderer to
* model column that contains the first name */

gtk_tree_view_column_add_attribute(col, renderer, "text", COL_FIRST_NAME);

/* --- Column #2 --- */

col = gtk_tree_view_column_new();

gtk_tree_view_column_set_title(col, "Last Name");

/* pack tree view column into tree view */
gtk_tree_view_append_column(GTK_TREE_VIEW(view), col);

renderer = gtk_cell_renderer_text_new();

/* pack cell renderer into tree view column */
gtk_tree_view_column_pack_start(col, renderer, TRUE);

/* connect ’text’ property of the cell renderer to
* model column that contains the last name */

gtk_tree_view_column_add_attribute(col, renderer, "text", COL_LAST_NAME);

/* set ’weight’ property of the cell renderer to
* bold print (we want all last names in bold) */

g_object_set(renderer,
"weight", PANGO_WEIGHT_BOLD,

29

Chapter 5. Mapping Data to the Screen: GtkTreeViewColumn and GtkCellRenderer

"weight-set", TRUE,
NULL);

/* --- Column #3 --- */

col = gtk_tree_view_column_new();

gtk_tree_view_column_set_title(col, "Age");

/* pack tree view column into tree view */
gtk_tree_view_append_column(GTK_TREE_VIEW(view), col);

renderer = gtk_cell_renderer_text_new();

/* pack cell renderer into tree view column */
gtk_tree_view_column_pack_start(col, renderer, TRUE);

/* connect a cell data function */
gtk_tree_view_column_set_cell_data_func(col, renderer, age_cell_data_func, NULL, NULL);

model = create_and_fill_model();

gtk_tree_view_set_model(GTK_TREE_VIEW(view), model);

g_object_unref(model); /* destroy model automatically with view */

gtk_tree_selection_set_mode(gtk_tree_view_get_selection(GTK_TREE_VIEW(view)),
GTK_SELECTION_NONE);

return view;
}

int
main (int argc, char **argv)
{

GtkWidget *window;
GtkWidget *view;

gtk_init(&argc, &argv);

window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
g_signal_connect(window, "delete_event", gtk_main_quit, NULL); /* dirty */

view = create_view_and_model();

gtk_container_add(GTK_CONTAINER(window), view);

gtk_widget_show_all(window);

gtk_main();

return 0;
}

5.7. How to Make a Whole Row Bold or Coloured
This seems to be a frequently asked question, so it is worth mentioning it here. You have the two approaches men-
tioned above: either you use cell data functions, and check in each whether a particular row should be highlighted
in a particular way (bold, coloured, whatever), and then set the renderer properties accordingly (and unset them
if you want that row to look normal), or you use attributes. Cell data functions are most likely not the right choice
in this case though.

If you only want every second line to have a gray background to make it easier for the user to see which data
belongs to which line in wide tree views, then you do not have to bother with the stuff mentioned here. Instead

30

Chapter 5. Mapping Data to the Screen: GtkTreeViewColumn and GtkCellRenderer

just set the rules hint on the tree view as described in the here, and everything will be done automatically, in
colours that conform to the chosen theme even (unless the theme disables rule hints, that is).

Otherwise, the most suitable approach for most cases is that you add two columns to your model, one for
the property itself (e.g. a column COL_ROW_COLOR of type G_TYPE_STRING), and one for the boolean flag of
the property (e.g. a column COL_ROW_COLOR_SET of type G_TYPE_BOOLEAN). You would then connect these
columns with the "foreground" and "foreground-set" properties of each renderer. Now, whenever you set
a row’s COL_ROW_COLOR field to a colour, and set that row’s COL_ROW_COLOR_SET field to TRUE, then
this column will be rendered in the colour of your choice. If you only want either the default text colour or one
special other colour, you could even achieve the same thing with just one extra model column: in this case you
could just set all renderer’s "foreground" property to whatever special color you want, and only connect the
COL_ROW_COLOR_SET column to all renderer’s "foreground-set" property using attributes. This works sim-
ilar with any other attribute, only that you need to adjust the data type for the property of course (e.g. "weight"
would take a G_TYPE_INT, in form of a PANGO_WEIGHT_FOOdefine in this case).

As a general rule, you should not change the text colour or the background colour of a cell unless you have a
really good reason for it. To quote Havoc Pennington: “Because colors in GTK+ represent a theme the user has
chosen, you should never set colors purely for aesthetic reasons. If users don’t like GTK+ gray, they can change it
themselves to their favorite shade of orange.”

5.8. How to Pack Icons into the Tree View
So far we have only put text in the tree view. While everything you need to know to display icons (in the form of
GdkPixbuf s) has been introduced in the previous sections, a short example might help to make things clearer. The
following code will pack an icon and some text into the same tree view column:

enum
{

COL_ICON = 0,
COL_TEXT,
NUM_COLS

};

GtkListStore *
create_liststore(void)
{

GtkListStore *store;
GtkTreeIter iter;
GdkPixbuf *icon;
GError *error = NULL;

store = gtk_list_store_new(2, GDK_TYPE_PIXBUF, G_TYPE_STRING);

icon = gdk_pixbuf_new_from_file("icon.png", &error);
if (error)
{

g_warning ("Could not load icon: %s\n", error->message);
g_error_free(error);
error = NULL;

}

gtk_list_store_append(store, &iter);
gtk_list_store_set(store, &iter,

COL_ICON, icon,
COL_TEXT, "example",
-1);

return store;
}

GtkWidget *
create_treeview(void)
{

GtkTreeModel *model;
GtkTreeViewColumn *col;
GtkCellRenderer *renderer;
GtkWidget *view;

31

Chapter 5. Mapping Data to the Screen: GtkTreeViewColumn and GtkCellRenderer

model = GTK_TREE_MODEL(create_liststore());

view = gtk_tree_view_new_with_model(model);

col = gtk_tree_view_column_new();
gtk_tree_view_column_set_title(col, "Title");

renderer = gtk_cell_renderer_pixbuf_new();
gtk_tree_view_column_pack_start(col, renderer, FALSE);
gtk_tree_view_column_set_attributes(col, renderer,

"pixbuf", COL_ICON,
NULL);

renderer = gtk_cell_renderer_text_new();
gtk_tree_view_column_pack_start(col, renderer, TRUE);
gtk_tree_view_column_set_attributes(col, renderer,

"text", COL_TEXT,
NULL);

gtk_tree_view_append_column(GTK_TREE_VIEW(view), col);

gtk_widget_show_all(view);

return view;
}

Note that the tree view will not resize icons for you, but displays them in their original size. If you want to
display stock icons instead of GdkPixbuf s loaded from file, you should have a look at the "stock-id" property
of GtkCellRendererPixbuf (and your model column should be of type G_TYPE_STRING, as all stock IDs are just
strings by which to identify the stock icon).

Notes
1. For those interested, the conversion actually takes place within g_object_set_property . Before a certain cell

is rendered, the tree view column will call gtk_tree_model_get_value to set the cell renderer properties
according to values stored in the tree model (if any are mapped via gtk_tree_view_column_add_attribute
or one of the convenience functions that do the same thing), and then pass on the GValue retrieved to
g_object_set_property .

32

Chapter 6. Selections, Double-Clicks and Context Menus

6.1. Handling Selections
One of the most basic features of a list or tree view is that rows can be selected or unselected. Selections are han-
dled using the GtkTreeSelection object of a tree view. Every tree view automatically has a GtkTreeSelection
associated with it, and you can get it using gtk_tree_view_get_selection . Selections are handled completely
on the tree view side, which means that the model knows nothing about which rows are selected or not. There is
no particular reason why selection handling could not have been implemented with functions that access the tree
view widget directly, but for reasons of API cleanliness and code clarity the Gtk+ developers decided to create
this special GtkTreeSelection object that then internally deals with the tree view widget. You will never need to
create a tree selection object, it will be created for you automatically when you create a new tree view. You only
need to use said gtk_tree_view_get_selection function to get a pointer to the selection object.

There are three ways to deal with tree view selections: either you get a list of the currently selected rows whenever
you need it, for example within a context menu function, or you keep track of all select and unselect actions and
keep a list of the currently selected rows around for whenever you need them; as a last resort, you can also traverse
your list or tree and check each single row for whether it is selected or not (which you need to do if you want all
rows that are not selected for example).

6.1.1. Selection Modes
You can use gtk_tree_selection_set_mode to influence the way that selections are handled. There are four
selection modes:

• GTK_SELECTION_NONE- no items can be selected

• GTK_SELECTION_SINGLE- no more than one item can be selected

• GTK_SELECTION_BROWSE- exactly one item is always selected

• GTK_SELECTION_MULTIPLE- anything between no item and all items can be selected

6.1.2. Getting the Currently Selected Rows
You can access the currently selected rows either by traversing all selected rows using

gtk_tree_selection_selected_foreach or get a GList of tree paths of the selected rows using
gtk_tree_selection_get_selected_rows . Note that this function is only available in Gtk+-2.2 and newer,

which means that you can’t use it or need to reimplement it if you want your application to work with older
installations.

If the selection mode you are using is either GTK_SELECTION_SINGLEor GTK_SELECTION_BROWSE, the most con-
venient way to get the selected row is the function gtk_tree_selection_get_selected , which will return TRUE
and fill in the specified tree iter with the selected row (if a row is selected), and return FALSEotherwise. It is used
like this:

...

GtkTreeSelection *selection;
GtkTreeModel *model;
GtkTreeIter iter;

/* This will only work in single or browse selection mode! */

selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(view));
if (gtk_tree_selection_get_selected(selection, &model, &iter))
{

gchar *name;

gtk_tree_model_get (model, &iter, COL_NAME, &name, -1);

g_print ("selected row is: %s\n", name);

g_free(name);
}
else

33

Chapter 6. Selections, Double-Clicks and Context Menus

{
g_print ("no row selected.\n");

}

...

One thing you need to be aware of is that you need to take care when removing rows from the
model in a gtk_tree_selection_selected_foreach callback, or when looping through the list that
gtk_tree_selection_get_selected_rows returns (because it contains paths, and when you remove rows in
the middle, then the old paths will point to either a non-existing row, or to another row than the one selected).
You have two ways around this problem: one way is to use the solution to removing multiple rows that has been
described above, ie. to get tree row references for all selected rows and then remove the rows one by one; the
other solution is to sort the list of selected tree paths so that the last rows come first in the list, so that you remove
rows from the end of the list or tree. You cannot remove rows from within a foreach callback in any case, that is
simply not allowed.

Here is an example of how to use gtk_tree_selection_selected_foreach :

...

gboolean
view_selected_foreach_func (GtkTreeModel *model,

GtkTreePath *path,
GtkTreeIter *iter,
gpointer userdata)

{
gchar *name;

gtk_tree_model_get (model, iter, COL_NAME, &name, -1);

g_print ("%s is selected\n", name);
}

void
do_something_with_all_selected_rows (GtkWidget *treeview)
{

GtkTreeSelection *selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(treeview));

gtk_tree_selection_selected_foreach(selection, view_selected_foreach_func, NULL);
}

void
create_view (void)
{

GtkWidget *view;
GtkTreeSelection *selection;

...

view = gtk_tree_view_new();

...

selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(view));

gtk_tree_selection_set_mode(selection, GTK_SELECTION_MULTIPLE);
...

}

...

34

Chapter 6. Selections, Double-Clicks and Context Menus

6.1.3. Using Selection Functions
You can set up a custom selection function with gtk_tree_selection_set_select_function . This function will
then be called every time a row is going to be selected or unselected (meaning: it will be called before the selection
status of that row is changed). Selection functions are commonly used for the following things:

1. ... to keep track of the currently selected items (then you maintain a list of selected items yourself). In this
case, note again that your selection function is called before the row’s selection status is changed. In other
words: if the row is going to be selected, then the boolean path_currently_selected variable that is passed to
the selection function is still FALSE. Also note that the selection function might not always be called when
a row is removed, so you either have to unselect a row before you remove it to make sure your selection
function is called and removes the row from your list, or check the validity of a row when you process
the selection list you keep. You should not store tree paths in your self-maintained list of of selected rows,
because whenever rows are added or removed or the model is resorted the paths might point to other rows.
Use tree row references or other unique means of identifying a row instead.

2. ... to tell Gtk+ whether it is allowed to select or unselect that specific row (you should make sure though that
it is otherwise obvious to a user whether a row can be selected or not, otherwise the user will be confused if
she just cannot select or unselect a row). This is done by returning TRUE or FALSE in the selection function.

3. ... to take additional action whenever a row is selected or unselected.

Yet another simple example:

...

gboolean
view_selection_func (GtkTreeSelection *selection,

GtkTreeModel *model,
GtkTreePath *path,
gboolean path_currently_selected,
gpointer userdata)

{
GtkTreeIter iter;

if (gtk_tree_model_get_iter(model, &iter, path))
{

gchar *name;

gtk_tree_model_get(model, &iter, COL_NAME, &name, -1);

if (!path_currently_selected)
{

g_print ("%s is going to be selected.\n", name);
}
else
{

g_print ("%s is going to be unselected.\n", name);
}

g_free(name);
}

return TRUE; /* allow selection state to change */
}

void
create_view (void)
{

GtkWidget *view;
GtkTreeSelection *selection;

...

view = gtk_tree_view_new();

...

selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(view));

35

Chapter 6. Selections, Double-Clicks and Context Menus

gtk_tree_selection_set_select_function(selection, view_selection_func, NULL, NULL);
...

}

...

6.1.4. Checking Whether a Row is Selected
You can check whether a given row is selected or not using the functions

gtk_tree_selection_iter_is_selected . or gtk_tree_selection_path_is_selected . If
you want to know all rows that are not selected, for example, you could just traverse the whole list or tree, and
use the above functions to check for each row whether it is selected or not.

6.1.5. Selecting and Unselecting Rows
You can select or unselect rows manually with gtk_tree_selection_select_iter ,

gtk_tree_selection_select_path , gtk_tree_selection_unselect_iter ,
gtk_tree_selection_unselect_path , gtk_tree_selection_select_all , and

gtk_tree_selection_unselect_all should you ever need to do that.

6.1.6. Getting the Number of Selected Rows
Sometimes you want to know the number of rows that are currently selected (for example to set context menu en-
tries active or inactive before you pop up a context menu). If you are using selection mode GTK_SELECTION_SINGLE
or GTK_SELECTION_BROWSE, this is trivial to check with gtk_tree_selection_get_selected , which will return
either TRUEor FALSE(meaning one selected row or no selected row).

If you are using GTK_SELECTION_MULTIPLEor want a more general approach that works for all selection modes,
gtk_tree_selection_count_selected_rows will return the information you are looking for. The only caveat
with this function is that it only exists in Gtk+-2.2 and newer, so you will have to reimplement it if you want users
with old installations that still use Gtk+-2.0 to be able to use your program as well. Here is a way to reimplement
this function:

static void
count_foreach_helper (GtkTreeModel *model,

GtkTreePath *path,
GtkTreeIter *iter,
gpointer userdata)

{
gint *p_count = (gint*) userdata;

g_assert (p_count != NULL);

*p_count = *p_count + 1;
}

gint
my_tree_selection_count_selected_rows (GtkTreeSelection *selection)
{

gint count = 0;

gtk_tree_selection_selected_foreach(selection, count_foreach_helper, &count);

return count;
}

36

Chapter 6. Selections, Double-Clicks and Context Menus

6.2. Double-Clicks on a Row
Catching double-clicks on a row is quite easy and is done by connecting to a tree view’s "row-activated" signal,
like this:

void
view_onRowActivated (GtkTreeView *treeview,

GtkTreePath *path,
GtkTreeViewColumn *col,
gpointer userdata)

{
GtkTreeModel *model;
GtkTreeIter iter;

g_print ("A row has been double-clicked!\n");

model = gtk_tree_view_get_model(treeview);

if (gtk_tree_model_get_iter(model, &iter, path))
{

gchar *name;

gtk_tree_model_get(model, &iter, COLUMN_NAME, &name, -1);

g_print ("Double-clicked row contains name %s\n", name);

g_free(name);
}

}

void
create_view (void)
{

GtkWidget *view;

view = gtk_tree_view_new();

...

g_signal_connect(view, "row-activated", (GCallback) view_onRowActivated, NULL);

...
}

6.3. Context Menus on Right Click
Context menus are context-dependent menus that pop up when a user right-clicks on a list or tree and usually let
the user do something with the selected items or manipulate the list or tree in other ways.

Right-clicks on a tree view are caught just like mouse button clicks are caught with any other widgets, namely by
connecting to the tree view’s "button_press_event" signal handler (which is a GtkWidget signal, and as GtkTree-
View is derived from GtkWidget it has this signal as well). Additionally, you should also connect to the "popup-
menu" signal, so users can access your context menu without a mouse. The "popup-menu" signal is emitted when
the user presses Shift-F10. Also, you should make sure that all functions provided in your context menu can also
be accessed by other means such as the application’s main menu. See the GNOME Human Interface Guidelines
(HIG) for more details. Straight from the a-snippet-of-code-says-more-than-a-thousand-words-department, some
code to look at:

void
view_popup_menu_onDoSomething (GtkWidget *menuitem, gpointer userdata)
{

/* we passed the view as userdata when we connected the signal */
GtkTreeView *treeview = GTK_TREE_VIEW(userdata);

37

Chapter 6. Selections, Double-Clicks and Context Menus

g_print ("Do something!\n");
}

void
view_popup_menu (GtkWidget *treeview, GdkEventButton *event, gpointer userdata)
{

GtkWidget *menu, *menuitem;

menu = gtk_menu_new();

menuitem = gtk_menu_item_new_with_label("Do something");

g_signal_connect(menuitem, "activate",
(GCallback) view_popup_menu_onDoSomething, treeview);

gtk_menu_shell_append(GTK_MENU_SHELL(menu), menuitem);

gtk_widget_show_all(menu);

/* Note: event can be NULL here when called from view_onPopupMenu;
* gdk_event_get_time() accepts a NULL argument */

gtk_menu_popup(GTK_MENU(menu), NULL, NULL, NULL, NULL,
(event != NULL) ? event->button : 0,
gdk_event_get_time((GdkEvent*)event));

}

gboolean
view_onButtonPressed (GtkWidget *treeview, GdkEventButton *event, gpointer userdata)
{

/* single click with the right mouse button? */
if (event->type == GDK_BUTTON_PRESS && event->button == 3)
{

g_print ("Single right click on the tree view.\n");

/* optional: select row if no row is selected or only
* one other row is selected (will only do something
* if you set a tree selection mode as described later
* in the tutorial) */

if (1)
{

GtkTreeSelection *selection;

selection = gtk_tree_view_get_selection(GTK_TREE_VIEW(treeview));

/* Note: gtk_tree_selection_count_selected_rows() does not
* exist in gtk+-2.0, only in gtk+ >= v2.2 ! */

if (gtk_tree_selection_count_selected_rows(selection) <= 1)
{

GtkTreePath *path;

/* Get tree path for row that was clicked */
if (gtk_tree_view_get_path_at_pos(GTK_TREE_VIEW(treeview),

(gint) event->x,
(gint) event->y,
&path, NULL, NULL, NULL))

{
gtk_tree_selection_unselect_all(selection);
gtk_tree_selection_select_path(selection, path);
gtk_tree_path_free(path);

}
}

} /* end of optional bit */

view_popup_menu(treeview, event, userdata);

return TRUE; /* we handled this */
}

return FALSE; /* we did not handle this */

38

Chapter 6. Selections, Double-Clicks and Context Menus

}

gboolean
view_onPopupMenu (GtkWidget *treeview, gpointer userdata)
{

view_popup_menu(treeview, NULL, userdata);

return TRUE; /* we handled this */
}

void
create_view (void)
{

GtkWidget *view;

view = gtk_tree_view_new();

...

g_signal_connect(view, "button-press-event", (GCallback) view_onButtonPressed, NULL);
g_signal_connect(view, "popup-menu", (GCallback) view_onPopupMenu, NULL);

...
}

39

Chapter 7. Sorting

Lists and trees are meant to be sorted. This is done using the GtkTreeSortable interface that can be imple-
mented by tree models. ’Interface’ means that you can just cast a GtkTreeModel into a GtkTreeSortable with
GTK_TREE_SORTABLE(model) and use the documented tree sortable functions on it, just like we did before when
we cast a list store to a tree model and used the gtk_tree_model_foo family of functions. Both GtkListStore
and GtkTreeStore implement the tree sortable interface.

The most straight forward way to sort a list store or tree store is to directly use the tree sortable interface on them.
This will sort the store in place, meaning that rows will actually be reordered in the store if required. This has the
advantage that the position of a row in the tree view will always be the same as the position of a row in the model,
in other words: a tree path refering to a row in the view will always refer to the same row in the model, so you
can get a row’s iter easily with gtk_tree_model_get_iter using a tree path supplied by the tree view. This is not
only convenient, but also sufficient for most scenarios.

However, there are cases when sorting a model in place is not desirable, for example when several tree views
display the same model with different sortings, or when the unsorted state of the model has some special meaning
and needs to be restored at some point. This is where GtkTreeModelSort comes in, which is a special model that
maps the unsorted rows of a child model (e.g. a list store or tree store) into a sorted state without changing the
child model.

7.1. GtkTreeSortable
The tree sortable interface is fairly simple and should be easy to use. Basically you define a ’sort column ID’ integer
for every criterion you might want to sort by and tell the tree sortable which function should be called to compare
two rows (represented by two tree iters) for every sort ID with gtk_tree_sortable_set_sort_func . Then you
sort the model by setting the sort column ID and sort order with gtk_tree_sortable_set_sort_column_id , and
the model will be re-sorted using the compare function you have set up. Your sort column IDs can correspond to
your model columns, but they do not have to (you might want to sort according to a criterion that is not directly
represented by the data in one single model column, for example). Some code to illustrate this:

enum
{

COL_NAME = 0,
COL_YEAR_BORN

};

enum
{

SORTID_NAME = 0,
SORTID_YEAR

};

GtkTreeModel *liststore = NULL;

void
toolbar_onSortByYear (void)
{

GtkTreeSortable *sortable;
GtkSortType order;
gint sortid;

sortable = GTK_TREE_SORTABLE(liststore);

/* If we are already sorting by year, reverse sort order,
* otherwise set it to year in ascending order */

if (gtk_tree_sortable_get_sort_column_id(sortable, &sortid, &order) == TRUE
&& sortid == SORTID_YEAR)

{
GtkSortType neworder;

neworder = (order == GTK_SORT_ASCENDING) ? GTK_SORT_DESCENDING : GTK_SORT_ASCENDING;

40

Chapter 7. Sorting

gtk_tree_sortable_set_sort_column_id(sortable, SORTID_YEAR, neworder);
}
else
{

gtk_tree_sortable_set_sort_column_id(sortable, SORTID_YEAR, GTK_SORT_ASCENDING);
}

}

/* This is not pretty. Of course you can also use a
* separate compare function for each sort ID value */

gint
sort_iter_compare_func (GtkTreeModel *model,

GtkTreeIter *a,
GtkTreeIter *b,
gpointer userdata)

{
gint sortcol = GPOINTER_TO_INT(userdata);
gint ret = 0;

switch (sortcol)
{

case SORTID_NAME:
{

gchar *name1, *name2;

gtk_tree_model_get(model, a, COL_NAME, &name1, -1);
gtk_tree_model_get(model, b, COL_NAME, &name2, -1);

if (name1 == NULL || name2 == NULL)
{

if (name1 == NULL && name2 == NULL)
break; /* both equal => ret = 0 */

ret = (name1 == NULL) ? -1 : 1;
}
else
{

ret = g_utf8_collate(name1,name2);
}

g_free(name1);
g_free(name2);

}
break;

case SORTID_YEAR:
{

guint year1, year2;

gtk_tree_model_get(model, a, COL_YEAR_BORN, &year1, -1);
gtk_tree_model_get(model, b, COL_YEAR_BORN, &year2, -1);

if (year1 != year2)
{

ret = (year1 > year2) ? 1 : -1;
}
/* else both equal => ret = 0 */

}
break;

default:
g_return_val_if_reached(0);

}

return ret;
}

void

41

Chapter 7. Sorting

create_list_and_view (void)
{

GtkTreeSortable *sortable;

...

liststore = gtk_list_store_new(2, G_TYPE_STRING, G_TYPE_UINT);

sortable = GTK_TREE_SORTABLE(liststore);

gtk_tree_sortable_set_sort_func(sortable, SORTID_NAME, sort_iter_compare_func,
GINT_TO_POINTER(SORTID_NAME), NULL);

gtk_tree_sortable_set_sort_func(sortable, SORTID_YEAR, sort_iter_compare_func,
GINT_TO_POINTER(SORTID_YEAR), NULL);

/* set initial sort order */
gtk_tree_sortable_set_sort_column_id(sortable, SORTID_NAME, GTK_SORT_ASCENDING);

...

view = gtk_tree_view_new_with_model(liststore);

...

}

Usually things are a bit easier if you make use of the tree view column headers for sorting, in which case you only
need to assign sort column IDs and your compare functions, but do not need to set the current sort column ID or
order yourself (see below).

Your tree iter compare function should return a negative value if the row specified by iter a comes before the
row specified by iter b, and a positive value if row b comes before row a. It should return 0 if both rows are
equal according to your sorting criterion (you might want to use a second sort criterion though to avoid ’jumping’
of equal rows when the store gets resorted). Your tree iter compare function should not take the sort order into
account, but assume an ascending sort order (otherwise bad things will happen).

7.2. GtkTreeModelSort
GtkTreeModelSort is a wrapper tree model. It takes another tree model such as a list store or a tree store as child
model, and presents the child model to the ’outside’ (ie. a tree view or whoever else is accessing it via the tree
model interface) in a sorted state. It does that without changing the order of the rows in the child model. This is
useful if you want to display the same model in different tree views with different sorting criteria for each tree
view, for example, or if you need to restore the original unsorted state of your store again at some point.

GtkTreeModelSort implements the GtkTreeSortable interface, so you can treat it just as if it was your data store
for sorting purposes. Here is the basic setup with a tree view:

...

void
create_list_and_view (void)
{

...

liststore = gtk_list_store_new(2, G_TYPE_STRING, G_TYPE_UINT);

sortmodel = gtk_tree_model_sort_new_with_model(liststore);

gtk_tree_sortable_set_sort_func(GTK_TREE_SORTABLE(sortmodel), SORTID_NAME,
sort_func, GINT_TO_POINTER(SORTID_NAME), NULL);

gtk_tree_sortable_set_sort_func(GTK_TREE_SORTABLE(sortmodel), SORTID_YEAR,
sort_func, GINT_TO_POINTER(SORTID_YEAR), NULL);

/* set initial sort order */
gtk_tree_sortable_set_sort_column_id(GTK_TREE_SORTABLE(sortmodel),

42

Chapter 7. Sorting

SORTID_NAME, GTK_SORT_ASCENDING);

...

view = gtk_tree_view_new_with_model(sortmodel);

...

}

...

However, when using the sort tree model, you need to be careful when you use iters and paths with the
model. This is because a path pointing to a row in the view (and the sort tree model here) does probably
not point to the same row in the child model which is your original list store or tree store, because
the row order in the child model is probably different from the sorted order. Similarly, an iter that is
valid for the sort tree model is not valid for the child model, and vice versa. You can convert paths
and iters from and to the child model using gtk_tree_model_sort_convert_child_path_to_path ,
gtk_tree_model_sort_convert_child_iter_to_iter , gtk_tree_model_sort_convert_path_to_child_path ,
and gtk_tree_model_sort_convert_iter_to_child_iter . You are unlikely to need these functions frequently
though, as you can still directly use gtk_tree_model_get on the sort tree model with a path supplied by the tree
view.

For the tree view, the sort tree model is the ’real’ model - it knows nothing about the sort tree model’s child model
at all, which means that any path or iter that you get passed from the tree view in a callback or otherwise will refer
to the sort tree model, and that you need to pass a path or iter refering to the sort tree model as well if you call tree
view functions.

7.3. Sorting and Tree View Column Headers
Unless you have hidden your tree view column headers or use custom tree view column header widgets, each
tree view column’s header can be made clickable. Clicking on a tree view column’s header will then sort the list
according to the data in that column. You need to do two things to make this happen: firstly, you need to tell your
model which sort function to use for which sort column ID with gtk_tree_sortable_set_sort_func . Once you
have done this, you tell each tree view column which sort column ID should be active if this column’s header is
clicked. This is done with gtk_tree_view_column_set_sort_column_id .

And that is really all you need to do to get your list or tree sorted. The tree view columns will automatically set
the active sort column ID and sort order for you if you click on a column header.

7.4. Case-insensitive String Comparing
As described above in the "GtkCellRendererText, UTF8, and pango markup" section, all strings that are to be
displayed in the tree view need to be encoded in UTF8 encoding. All ASCII strings are valid UTF8, but as soon as
non-ASCII characters are used, things get a bit tricky and the character encoding matters.

Comparing two ASCII strings ignoring the case is trivial and can be done using g_ascii_strcasecmp , for exam-
ple. strcasecmp will usually do the same, only that it is also locale-aware to some extent. The only problem is that
a lot of users use locale character encodings that are not UTF8, so strcasecmp does not take us very far.

g_utf8_collate will compare two strings in UTF8 encoding, but it does not ignore the case. In order to achieve
at least half-way correct linguistic case-insensitive sorting, we need to take a two-step approach. For example, we
could use g_utf8_casefold to convert the strings to compare into a form that is independent of case, and then
use g_utf8_collate to compare those two strings (note that the strings returned by g_utf8_casefold will not
resemble the original string in any recognisable way; they will work fine for comparisons though). Alternatively,
one could use g_utf8_strdown on both strings and then compare the results again with g_utf8_collate .

Obviously, all this is not going to be very fast, and adds up if you have a lot of rows. To speed things up, you can
create a ’collation key’ with g_utf8_collate_key and store that in your model as well. A collation key is just a
string that does not mean anything to us, but can be used with strcmp for string comparison purposes (which is
a lot faster than g_utf8_collate).

It should be noted that the way g_utf8_collate sorts is dependent on the current locale. Make sure you are not
working in the ’C’ locale (=default, none specified) before you are wondering about weird sorting orders. Check
with ’echo $LANG’ on a command line what you current locale is set to.

43

Chapter 7. Sorting

Check out the "Unicode Manipulation" section in the GLib API Reference for more details.

44

Chapter 8. Editable Cells

8.1. Editable Text Cells
With GtkCellRendererText you can not only display text, but you can also allow the user to edit a single cell’s
text right in the tree view by double-clicking on a cell.

To make this work you need to tell the cell renderer that a cell is editable, which you can do by setting the
"editable" property of the text cell renderer in question to TRUE. You can either do this on a per-row basis (which
allows you to set each single cell either editable or not) by connecting the "editable" property to a boolean type
column in your tree model using attributes; or you can just do a ...

g_object_set(renderer, "editable", TRUE, NULL);

... when you create the renderer, which sets all rows in that particular renderer column to be editable.

Now that our cells are editable, we also want to be notified when a cell has been edited. This can be achieved by
connecting to the cell renderer’s "edited" signal:

g_signal_connect(renderer, "edited", (GCallback) cell_edited_callback, NULL);

This callback is then called whenever a cell has been edited. Instead of NULLwe could have passed a pointer to the
model as user data for convenience, as we probably want to store the new value in the model.

The callback for the "edited" signal looks like this (the API reference is a bit lacking in this particular case):

void cell_edited_callback (GtkCellRendererText *cell,
gchar *path_string,
gchar *new_text,
gpointer user_data);

The tree path is passed to the "edited" signal callback in string form. You can convert this
into a GtkTreePath with gtk_tree_path_new_from_string , or convert it into an iter with
gtk_tree_model_get_iter_from_string .

Note that the cell renderer will not change the data for you in the store. After a cell has been edited, you will only
receive an "edited" signal. If you do not change the data in the store, the old text will be rendered again as if
nothing had happened.

If you have multiple (renderer) columns with editable cells, it is not necessary to have a different callback for each
renderer, you can use the same callback for all renderers, and attach some data to each renderer, which you can
later retrieve again in the callback to know which renderer/column has been edited. This is done like this, for
example:

renderer = gtk_cell_renderer_text_new();
...
g_object_set_data(G_OBJECT(renderer), "my_column_num", GUINT_TO_POINTER(COLUMN_NAME));

...

renderer = gtk_cell_renderer_text_new();
...
g_object_set_data(G_OBJECT(renderer), "my_column_num", GUINT_TO_POINTER(COLUMN_YEAR_OF_BIRTH));

...

where COLUMN_NAME and COLUMN_YEAR_OF_BIRTH are enum values. In your callback you can then get
the column number with

guint column_number = GPOINTER_TO_UINT(g_object_get_data(G_OBJECT(renderer), "my_column_num"));

You can use this mechanism to attach all kinds of custom data to any object or widget, with a string identifier to
your liking.

A good example for editable cells is in gtk-demo, which is part of the Gtk+ source code tree (in
gtk+-2.x.y/demos/gtk-demo).

45

Chapter 8. Editable Cells

8.1.1. Setting the cursor to a specific cell
You can move the cursor to a specific cell in a tree view with gtk_tree_view_set_cursor (or
gtk_tree_view_set_cursor_on_cell if you have multiple editable cell renderers packed into one tree view

column), and start editing the cell if you want to. Similarly, you can get the current row and focus column with
gtk_tree_view_get_cursor . Use gtk_widget_grab_focus(treeview) will make sure that the tree view has

the keyboard focus.

As the API reference points out, the tree view needs to be realised for cell editing to happen. In other words:
If you want to start editing a specific cell right at program startup, you need to set up an idle timeout with
g_idle_add that does this for you as soon as the window and everything else has been realised (return FALSE in

the timeout to make it run only once). Alternatively you could connect to the "realize" signal of the treeview
with g_signal_connect_after to achieve the same thing.

Connect to the tree view’s "cursor-changed" and/or "move-cursor" signals to keep track of the current position
of the cursor.

8.2. Editable Toggle and Radio Button Cells
Just like you can set a GtkCellRendererText editable, you can specify whether a GtkCellRendererToggle should
change its state when clicked by setting the "activatable" property - either when you create the renderer (in
which case all cells in that column will be clickable) or by connecting the renderer property to a model column of
boolean type via attributes.

Connect to the "toggled" signal of the toggle cell renderer to be notified when the user clicks on a toggle button
(or radio button). The user click will not change the value in the store, or the appearance of the value rendered.
The toggle button will only change state when you update the value in the store. Until then it will be in an
"inconsistent" state, which is also why you should read the current value of that cell from the model, and not from
the cell renderer.

The callback for the "toggled" signal looks like this (the API reference is a bit lacking in this particular case):

void cell_toggled_callback (GtkCellRendererToggle *cell,
gchar *path_string,
gpointer user_data);

Just like with the "edited" signal of the text cell renderer, the tree path is passed to the "toggled" signal callback
in string form. You can convert this into a GtkTreePath with gtk_tree_path_new_from_string , or convert it
into an iter with gtk_tree_model_get_iter_from_string .

8.3. Editable Spin Button Cells
Even though GtkSpinButton implements the GtkCellEditable interface (as does GtkEntry), there is no easy
way to get a cell renderer that uses a spin button instead of a normal entry when in editing mode.

To get this functionality, you need to either write a new cell renderer that works very similar to
GtkCellRendererText , or you need to write a new cell renderer class that derives from the text cell renderer and
changes the behaviour in editing mode.

The cleanest solution would probably be to write a ’CellRendererNumeric’ that does everything that the text
cell renderer does, only that it has a float type property instead of the "text" property, and an additional digits
property. However, no one seems to have done this yet, so you need to either write one, or find another solution
to get spin buttons in editing mode.

Among this tutorial’s code examples there is a hackish CellRendererSpin implementation which is based on
GtkCellRendererText and shows spin buttons in editing mode. The implementation is not very refined though,
so you need to make sure it works in your particular context, and modify it as needed.

46

Chapter 9. Miscellaneous

This section deals with issues and questions that did not seem to fit in anywhere else. If you can think of something
else that should be dealt with here, do not hesitate to send a mail to <tim at centricular dot net >.

9.1. Getting the Column Number from a Tree View Column Widget
Signal callbacks often only get passed a pointer to a GtkTreeViewColumn when the application programmer really
just wants to know which column number was affected. There are two ways to find out the position of a column
within the tree view. One way is to write a small helper function that looks up the column number from a given
tree view column object, like this for example: 1.

/* Returns column number or -1 if not found or on error */

gint
get_col_number_from_tree_view_column (GtkTreeViewColumn *col)
{

GList *cols;
gint num;

g_return_val_if_fail (col != NULL, -1);
g_return_val_if_fail (col->tree_view != NULL, -1);

cols = gtk_tree_view_get_columns(GTK_TREE_VIEW(col->tree_view));

num = g_list_index(cols, (gpointer) col);

g_list_free(cols);

return num;
}

Alternatively, it is possible to use g_object_set_data and g_object_get_data on the tree view column in order
to identify which column it is. This also has the advantage that you can still keep track of your columns even if
the columns get re-ordered within the tree view (a feature which is usually disabled though). Use like this:

...

enum
{

COL_FIRSTNAME,
COL_SURNAME,

};

...

void
some_callback (GtkWidget *treeview, ..., GtkTreeViewColumn *col, ...)
{

guint colnum = GPOINTER_TO_UINT(g_object_get_data(G_OBJECT(col), "columnnum"));

...
}

void
create_view(void)
{

...
col = gtk_tree_view_column_new();
g_object_set_data(G_OBJECT(col), "columnnum", GUINT_TO_POINTER(COL_FIRSTNAME));
...
col = gtk_tree_view_column_new();
g_object_set_data(G_OBJECT(col), "columnnum", GUINT_TO_POINTER(COL_SURNAME));
...

}

"columnnum" is a random string in the above example - you can use whatever string you want instead, or store
multiple bits of data (with different string identifiers of course). Of course you can also combine both approaches,

47

Chapter 9. Miscellaneous

as they do slightly different things (the first tracks the ’physical’ position of a column within the tree view, the
second tracks the ’meaning’ of a column to you, independent of its position within the view).

9.2. Column Expander Visibility

9.2.1. Hiding the Column Expander
Is it possible to hide the column expander completely? Yes and no. What follows, is probably a dirty hack at best
and there is no guarantee that it will work with upcoming Gtk+ versions or even with all past versions (although
the latter is easy enough to test of course).

What you can do to hide the column expander is to create an empty tree view column (containing
empty strings, for example) and make this the first column in the tree view. Then you can hide that
column with gtk_tree_view_column_set_visible . You will notice that the expander column will now
automatically move to the formerly second, now first, visible column in the tree view. However, if you call
gtk_tree_view_set_expander_column right after the call to _set_visible , then the expander will move back

to the hidden column, and no expander is visible any longer.

This means of course that you will have to take care of expanding and collapsing rows yourself and use the
appropriate tree view functions. While it is at last thinkable that one could implement custom expanders using
custom cell rendereres or pixbuf cell renderers, this is probably a task that will keep you busy for more than five
minutes. Keep those head ache tablets nearby if you attempt it anyway...

9.2.2. Forcing Column Expander Visibility
There are situations where an expander should be visible even if the row in question does not have any children
yet, for instance when part of a model should only be loaded on request when a node gets expanded (e.g. to show
the contents of a directory). This is not possible. An expander is only shown if a node has children.

A work-around for this problem exists however: simply attach an empty child row and set the node to collapsed
state. Then listen for the tree view’s "row-expanded" signal, and fill the contents of the already existing row with
the first new row, then append new child rows. See this mailing list thread for more details.

9.3. Getting the Cell Renderer a Click Event Happened On
It seems that in many cases when people want to know the cell renderer a click event happened on, they do not
really need to know the cell renderer, but rather want to modify an individual cell in a particular column. For
this you do not need to know the cell renderer. Use gtk_tree_view_get_path_at_pos to get a tree path from
the x and y coordinates of the button event that is passed to you in a "button-press-event" signal callback (if
you use the "row-activated" signal to catch double-clicks you get the tree path passed directly into the callback
function). Then convert that tree path into an iter using gtk_tree_model_get_iter and modify the data in the
cell you want to modify with gtk_list_store_set or gtk_tree_store_set .

If you really do need to know the cell renderer where a button press event happened, that is a bit more tricky. Here
is a suggestion on how to approach this issue (the function has not been well-tested and might not work correctly
if the content rendered by one renderer in different columns varies in width; please send suggestions on how to
fix or improve this function to the author):

static gboolean
tree_view_get_cell_from_pos(GtkTreeView *view, guint x, guint y, GtkCellRenderer **cell)
{
GtkTreeViewColumn *col = NULL;
GList *node, *columns, *cells;
guint colx = 0;

g_return_val_if_fail (view != NULL, FALSE);
g_return_val_if_fail (cell != NULL, FALSE);

/* (1) find column and column x relative to tree view coordinates */

columns = gtk_tree_view_get_columns(view);

for (node = columns; node != NULL && col == NULL; node = node->next)

48

Chapter 9. Miscellaneous

{
GtkTreeViewColumn *checkcol = (GtkTreeViewColumn*) node->data;

if (x >= colx && x < (colx + checkcol->width))
col = checkcol;
else
colx += checkcol->width;
}

g_list_free(columns);

if (col == NULL)
return FALSE; /* not found */

/* (2) find the cell renderer within the column */

cells = gtk_tree_view_column_get_cell_renderers(col);

for (node = cells; node != NULL; node = node->next)
{
GtkCellRenderer *checkcell = (GtkCellRenderer*) node->data;
guint width = 0, height = 0;

/* Will this work for all packing modes? doesn’t that
* return a random width depending on the last content
* rendered? */

gtk_cell_renderer_get_size(checkcell, GTK_WIDGET(view), NULL, NULL, NULL, &width, NULL);

if (x >= colx && x < (colx + width))
{
*cell = checkcell;
g_list_free(cells);
return TRUE;
}

colx += width;
}

g_list_free(cells);
return FALSE; /* not found */
}

static gboolean
onButtonPress (GtkWidget *view, GdkEventButton *bevent, gpointer data)
{
GtkCellRenderer *renderer = NULL;

if (tree_view_get_cell_from_pos(GTK_TREE_VIEW(view), bevent->x, bevent->y, &renderer))
g_print ("Renderer found\n");
else
g_print ("Renderer not found!\n");
}

9.4. Glade and Tree Views
A frequently asked question is how you can add columns to a GtkTreeView in Glade. 2 The answer is basically
that you don’t, and that you can’t. The only thing glade/libglade can do for you is to create the GtkTreeView
for you with nothing in it. You will need to look up the tree view widget at the start of your application (after
the interface has been created of course), and connect your list store or tree store to it. Then you will need to add
GtkTreeViewColumn s and cell renderers to display the information from the model as you want it to be displayed.
You will need to do all that from within your application.

An alternative approach is to derive your own special widget from GtkTreeView that sets up everything as you
want it to, and then use the ’custom widget’ function in glade. Of course this still means that you have to write all
the code to fill in the columns and cell renderers and to create the model yourself.

49

Chapter 9. Miscellaneous

Notes
1. This function has been inspired by this mailing list message (thanks to Ken Rastatter for the link and the topic

suggestion).

2. Do not use Glade to generate code for you. Use Glade to create the interface. It will save the interface into
a .glade file in XML format. You can then use libglade2 to construct your interface (windows etc.) from that
.glade file. See this mailing list message for a short discussion about why you should avoid Glade code gen-
eration.

50

Chapter 10. Drag’n’Drop (DnD) **** needs revision ***

****** NEEDS REVISION

This section needs revision more than any other section. If you know anything about tree view drag’n’drop, you
probably know more than the author of this text. Please give some feedback in that case.

If you want to dive into treeview drag’n’drop, you might want to check out Owen Taylor’s mail on that topic.
It might not be completely identical to what has actually been implemented, but it gives a great overview, and
provides more information than the docs do.

In addition to the standard Gtk+ Drag and Drop mechanisms that work with any widget, there are special Drag
and Drop mechanisms just for the tree view widget. You usually want to use the tree-view specific Drag-and-Drop
framework.

10.1. Drag’n’Dropping Row-Unrelated Data to and from a Tree View from other
Windows or Widgets
Drag’n’Dropping general information from or to a tree view widget works just like it works with any other widget
and involves the standard Gtk+ Drag and Drop mechanisms. If you use this, you can receive drops to or initiate
drags from anywhere in your tree view (including empty sections). This is not row- or column-specific and is most
likely not want you want. Nevertheless, here is a small example of a tree view in which you can drag’n’drop URIs
from other applications (browsers, for example), with the dropped URIs just being appended to the list (note that
usually you would probably rather want to set up your whole window as a target then and not just the tree view
widget):

#include <gtk/gtk.h>

enum
{

COL_URI = 0,
NUM_COLS

} ;

void
view_onDragDataReceived(GtkWidget *wgt, GdkDragContext *context, int x, int y,

GtkSelectionData *seldata, guint info, guint time,
gpointer userdata)

{
GtkTreeModel *model;
GtkTreeIter iter;

model = GTK_TREE_MODEL(userdata);

gtk_list_store_append(GTK_LIST_STORE(model), &iter);

gtk_list_store_set(GTK_LIST_STORE(model), &iter, COL_URI, (gchar*)seldata->data, -1);
}

static GtkWidget *
create_view_and_model (void)
{

GtkTreeViewColumn *col;
GtkCellRenderer *renderer;
GtkListStore *liststore;
GtkWidget *view;

liststore = gtk_list_store_new(NUM_COLS, G_TYPE_STRING);

view = gtk_tree_view_new_with_model(GTK_TREE_MODEL(liststore));

g_object_unref(liststore); /* destroy model with view */

col = gtk_tree_view_column_new();
renderer = gtk_cell_renderer_text_new();

gtk_tree_view_column_set_title(col, "URI");
gtk_tree_view_append_column(GTK_TREE_VIEW(view), col);

51

Chapter 10. Drag’n’Drop (DnD) **** needs revision ***

gtk_tree_view_column_pack_start(col, renderer, TRUE);
gtk_tree_view_column_add_attribute(col, renderer, "text", COL_URI);

gtk_tree_selection_set_mode(gtk_tree_view_get_selection(GTK_TREE_VIEW(view)),
GTK_SELECTION_SINGLE);

/* Make tree view a destination for Drag’n’Drop */
if (1)
{

enum
{

TARGET_STRING,
TARGET_URL

};

static GtkTargetEntry targetentries[] =
{

{ "STRING", 0, TARGET_STRING },
{ "text/plain", 0, TARGET_STRING },
{ "text/uri-list", 0, TARGET_URL },

};

gtk_drag_dest_set(view, GTK_DEST_DEFAULT_ALL, targetentries, 3,
GDK_ACTION_COPY|GDK_ACTION_MOVE|GDK_ACTION_LINK);

g_signal_connect(view, "drag_data_received",
G_CALLBACK(view_onDragDataReceived), liststore);

}

return view;
}

int
main (int argc, char **argv)
{

GtkWidget *window, *vbox, *view, *label;

gtk_init(&argc, &argv);

window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
g_signal_connect(window, "delete_event", gtk_main_quit, NULL); /* dirty */
gtk_window_set_default_size(GTK_WINDOW(window), 400, 200);

vbox = gtk_vbox_new(FALSE, 0);
gtk_container_add(GTK_CONTAINER(window), vbox);

label = gtk_label_new("\nDrag and drop links from your browser into the tree view.\n");
gtk_box_pack_start(GTK_BOX(vbox), label, FALSE, FALSE, 0);

view = create_view_and_model();
gtk_box_pack_start(GTK_BOX(vbox), view, TRUE, TRUE, 0);

gtk_widget_show_all(window);

gtk_main();

return 0;
}

If you are receiving drops into a tree view, you can connect to the view’s "drag-motion" signal to track the mouse
pointer while it is in a drag and drop operation over the tree view. This is useful for example if you want to
expand a collapsed node in a tree when the mouse hovers above the node for a certain amount of time during a
drag’n’drop operation. Here is an example of how to achieve this:

/***
*
* onDragMotion_expand_timeout
*
* Timeout used to make sure that we expand rows only
* after hovering about them for a certain amount
* of time while doing Drag’n’Drop

52

Chapter 10. Drag’n’Drop (DnD) **** needs revision ***

*
***/

gboolean
onDragMotion_expand_timeout (GtkTreePath **path)
{

g_return_val_if_fail (path != NULL, FALSE);
g_return_val_if_fail (*path != NULL, FALSE);

gtk_tree_view_expand_row(GTK_TREE_VIEW(view), *path, FALSE);

return FALSE; /* only call once */
}

/***
*
* view_onDragMotion: we don’t want to expand unexpanded nodes
* immediately when the mouse pointer passes across
* them during DnD. Instead, we only want to expand
* the node if the pointer has been hovering above the
* node for at least 1.5 seconds or so. To achieve this,
* we use a timeout that is removed whenever the row
* in focus changes.
*
***/

static gboolean
view_onDragMotion (GtkWidget *widget, GdkDragContext *context, gint x,

gint y, guint time, gpointer data)
{

static GtkTreePath *lastpath; /* NULL */
GtkTreePath *path = NULL;

if (gtk_tree_view_get_path_at_pos(GTK_TREE_VIEW(widget), x, y, &path, NULL, NULL, NULL))
{

if (!lastpath || ((lastpath) && gtk_tree_path_compare(lastpath, path) != 0))
{

(void) g_source_remove_by_user_data(&lastpath);

if (!gtk_tree_view_row_expanded(GTK_TREE_VIEW(widget), path))
{

/* 1500 = 1.5 secs */
g_timeout_add(1500, (GSourceFunc) onDragMotion_expand_timeout, &lastpath);

}
}

}
else
{

g_source_remove_by_user_data(&lastpath);
}

if (lastpath)
gtk_tree_path_free(lastpath);

lastpath = path;

return TRUE;
}

Connect to the view’s "drag-drop" signal to be called when the drop happens. You can translate the coordinates
provided into a tree path with gtk_tree_view_get_path_at_pos .

53

Chapter 10. Drag’n’Drop (DnD) **** needs revision ***

10.2. Dragging Rows Around Within a Tree **** TODO ***
****** TODO

Both GtkListStore and GtkTreeStore implement the GtkTreeDragDest and GtkTreeDragSource
interfaces, which means that they have in-built support for row reordering. You need to call
gtk_tree_view_set_reorderable to activate this, and then connect to the tree model’s signals to catch the
reorderings that take place.

*** SOMEONE NEEDS TO WRITE THIS SECTION (I have never gotten this to work in a way that does not suck,
ie. where one does not have to place the row to move exact to the pixel on the target row).

10.3. Dragging Rows from One Tree to Another **** TODO ***
****** TODO (is this possible at all in Gtk+ <= 2.2?)

54

Chapter 11. Writing Custom Models

11.1. When is a Custom Model Useful?
A custom tree model gives you complete control over your data and how it is represented to the outside (e.g. to
the tree view widget). It has the advantage that you can store, access and modify your data exactly how you need
it, and you can optimise the way your data is stored and retrieved, as you can write your own functions to access
your data and need not rely solely on the gtk_tree_model_get . A model tailored to your needs will probably also
be a lot faster than the generic list and tree stores that come with gtk and that have been designed with flexibility
in mind.

Another case where a custom model might come in handy is when you have all your data already stored in an
external tree-like structure (for example a libxml2 XML tree) and only want to display that structure. Then you
could write a custom model that maps that structure to a tree model (which is probably not quite as trivial as it
sounds though).

Using a custom model you could also implement a filter model that only displays certain rows according to
some filter criterion instead of displaying all rows (Gtk+-2.4 has a filter model, GtkTreeModelFilter , that
does exactly that and much more, but you might want to implement this yourself anyway. If you need to use
GtkTreeModelFilter in Gtk-2.0 or Gtk-2.2, check out the code examples of this tutorial - there is GuiTreeModelFilter,
which is basically just the original GtkTreeModelFilter but has been made to work with earlier Gtk-2.x versions
and has a different name space, so that it does not clash with Gtk-2.4).

However, all this comes at a cost: you are unlikely to write a useful custom model in less than a thousand lines,
unless you strip all newline characters. Writing a custom model is not as difficult as it might sound though, and it
may well be worth the effort, not least because it will result in much saner code if you have a lot of data to keep
track of.

11.2. What Does Writing a Custom Model Involve?
Basically, all you need to do is to write a new GObject that implements the GtkTreeModel interface,
GtkTreeModelIface . Intimate knowledge about the GLib GObject system is not a requirement - you just need to
copy some boilerplate code and modify it a bit. The core of your custom tree model is your own implementation
of a couple of gtk_tree_model_foo functions that reveal the structure of your data, ie. how many rows there are,
how many children a row has, how many columns there are and what type of data they contain. Furthermore,
you need to provide functions that convert a tree path to a tree iter and a tree iter to a tree path. Additionally, you
should provide some functions to add and remove rows to your custom model, but those are only ever used by
yourself anyway, so they do not fall within the scope of the tree model interface.

The functions you need to implement are:

• get_flags - tells the outside that your model has certain special characterstics, like persistent iters.

• get_n_columns - how many data fields per row are visible to the outside that uses gtk_tree_model_get, e.g. cell
renderer attributes

• get_column_type - what type of data is stored in a data field (model column) that is visible to the outside

• get_iter - take a tree path and fill an iter structure so that you know which row it refers to

• get_path - take an iter and convert it into a tree path, ie. the ’physical’ position within the model

• get_value - retrieve data from a row

• iter_next - take an iter structure and make it point to the next row

• iter_children - tell whether the row represented by a given iter has any children or not

• iter_n_children - tell how many children a row represented by a given iter has

• iter_nth_child - set a given iter structure to the n-th child of a given parent iter

• iter_parent - set a given iter structure to the parent of a given child iter

It is up to you to decide which of your data you make ’visible’ to the outside in form of model columns and which
not. You can always implement functions specific to your custom model that will return any data in any form you
desire. You only need to make data ’visble’ to the outside via the GType and GValue system if you want the tree
view components to access it (e.g. when setting cell renderer attributes).

55

Chapter 11. Writing Custom Models

11.3. Example: A Simple Custom List Model
What follows is the outline for a simple custom list model. You can find the complete source code for this model
below. The beginning of the code might look a bit scary, but you can just skip most of the GObject and GType stuff
and proceed to the heart of the custom list, ie. the implementation of the tree model functions.

Our list model is represented by a simple list of records, where each row corresponds to a CustomRecord structure
which keeps track of the data we are interested in. For now, we only want to keep track of persons’ names and
years of birth (usually this would not really justify a custom model, but this is still just an example). It is trivial to
extend the model to deal with additional fields in the CustomRecord structure.

Within the model, more precisely: the CustomList structure, the list is stored as a pointer array, which not only
provides fast access to the n-th record in the list, but also comes in handy later on when we add sorting. Apart from
that, any other kind of list-specific data would go in this structure as well (the active sort column, for example, or
hash tables to speed up searching for a specific row, etc.).

Each row in our list is represented by a CustomRecord structure. You can store whatever other data you need in
that structure. How you make row data available is up to you. Either you export it via the tree model interface
using the GValue system, so that you can use gtk_tree_model_get to retrieve your data, or you provide custom
model-specific functions to retrieve data, for example custom_list_get_name , taking a tree iter or a tree path as
argument. Of course you can also do both.

Furthermore, you will need to provide your own functions to add rows, remove rows, and set or modify row
data, and you need to let the view and others know whenever something changes in your model by emitting the
appropriate signals via the provided tree model functions.

Some thought should go into how exactly you fill the GtkTreeIter fields of the tree iters used by your model.
You have three pointer fields at your disposal. These should be filled so that you can easily identify the row given
the iter, and should also facilitate access to the next row and the parent row (if any). If your model advertises to
have persistent iters, you need to make sure that the content of your iters is perfectly valid even if the user stores it
somewhere for later use and the model gets changed or reordered. The ’stamp’ field of a tree iter should be filled
by a random model-instance-specific integer that was assigned to the model when it was created. This way you
can catch iters that do not belong to your model. If your model does not have persistent iters, then you should
change the model’s stamp whenever the model changes, so that you can catch invalid iters that get passed to your
functions (note: in the code below we do not check the stamp of the iters in order to save a couple of lines of code
to print here).

In our specific example, we simply store a pointer to a row’s CustomRecord structure in our model’s tree iters,
which is valid as long as the row exists. Additionally we store the position of a row within the list in the
CustomRecord as well, which is not only intuitive, but is also useful later on when we resort the list.

If you want to store an integer value in an iter’s fields, you should use GLib’s GINT_TO_POINTER and
GPOINTER_TO_INTmacros for that.

Let’s look at the code sections in a bit more detail:

11.3.1. custom-list.h
The header file for our custom list model defines some standard type casts and type check macros, our
CustomRecord structure, our CustomList structure, and some enums for the model columns we are exporting.

The CustomRecord structure represents one row, while the CustomList structure contains all list-specific data.
You can add additional fields to both structures without problems. For example, you might need a function that
quickly looks up rows given the name or year of birth, for which additional hashtables or so might come in handy
(which you would need to keep up to date as you insert, modify or remove rows of course).

The only function you must export is custom_list_get_type , as it is used by the type check and type cast macros
that are also defined in the header file. Additionally, we want to export a function to create one instance of our
custom model, and a function that adds some rows. You will probably add more custom model-specific functions
to modify the model as you extend it to suit your needs.

11.3.2. custom-list.c
Firstly, we need some boilerplate code to register our custom model with the GObject type system. You can skip
this section and proceed to the tree model implementation.

Functions of interested in this section are custom_list_init and custom_list_get_type . In custom_list_init
we define what data type our exported model columns have, and how many columns we export. Towards the end
of custom_list_get_type we register the GtkTreeModel interface with our custom model object. This is where

56

Chapter 11. Writing Custom Models

we can also register additional interfaces (e.g. GtkTreeSortable or one of the Drag’n’Drop interfaces) that we
want to implement.

In custom_list_tree_model_init we override those tree model functions that we need to implement with our
own functions. If it is beneficial for your model to know which rows are currently displayed in the tree view (for
example for caching), you might want to override the ref_node and unref_node functions as well.

Let’s have a look at the heart of the object type registration:

GType
custom_list_get_type (void)
{

static GType custom_list_type = 0;

if (custom_list_type)
return custom_list_type;

/* Some boilerplate type registration stuff */
if (1)
{

static const GTypeInfo custom_list_info =
{

sizeof (CustomListClass),
NULL, /* base_init */
NULL, /* base_finalize */
(GClassInitFunc) custom_list_class_init,
NULL, /* class finalize */
NULL, /* class_data */
sizeof (CustomList),
0, /* n_preallocs */
(GInstanceInitFunc) custom_list_init

};

custom_list_type = g_type_register_static (G_TYPE_OBJECT, "CustomList",
&custom_list_info, (GTypeFlags)0);

}

/* Here we register our GtkTreeModel interface with the type system */
if (1)
{

static const GInterfaceInfo tree_model_info =
{

(GInterfaceInitFunc) custom_list_tree_model_init,
NULL,
NULL

};

g_type_add_interface_static (custom_list_type, GTK_TYPE_TREE_MODEL, &tree_model_info);
}

return custom_list_type;
}

Here we just return the type assigned to our custom list by the type system if we have already registered it. If not,
we register it and save the type. Of the three callbacks that we pass to the type system, only two are of immediate
interest to us, namely custom_list_tree_model_init and custom_list_init .

In custom_list_tree_model_init we fill the tree model interface structure with pointers to our own functions
(at least the ones we implement):

static void
custom_list_tree_model_init (GtkTreeModelIface *iface)
{

/* Here we override the GtkTreeModel
* interface functions that we implement */

iface->get_flags = custom_list_get_flags;
iface->get_n_columns = custom_list_get_n_columns;
iface->get_column_type = custom_list_get_column_type;
iface->get_iter = custom_list_get_iter;
iface->get_path = custom_list_get_path;
iface->get_value = custom_list_get_value;

57

Chapter 11. Writing Custom Models

iface->iter_next = custom_list_iter_next;
iface->iter_children = custom_list_iter_children;
iface->iter_has_child = custom_list_iter_has_child;
iface->iter_n_children = custom_list_iter_n_children;
iface->iter_nth_child = custom_list_iter_nth_child;
iface->iter_parent = custom_list_iter_parent;

}

In custom_list_init we initialised the custom list structure to sensible default values. This function will be called
whenever a new instance of our custom list is created, which we do in custom_list_new .

custom_list_finalize is called just before one of our lists is going to be destroyed. You should free all resources
that you have dynamically allocated in there.

Having taken care of all the type system stuff, we now come to the heart of our custom model, namely the tree
model implementation. Our tree model functions need to behave exactly as the API reference requires them to
behave, including all special cases, otherwise things will not work. Here is a list of links to the API reference
descriptions of the functions we are implementing:

• gtk_tree_model_get_flags

• gtk_tree_model_get_n_columns

• gtk_tree_model_get_column_type

• gtk_tree_model_get_iter

• gtk_tree_model_get_path

• gtk_tree_model_get_value

• gtk_tree_model_iter_next

• gtk_tree_model_iter_children

• gtk_tree_model_iter_has_child

• gtk_tree_model_iter_n_children

• gtk_tree_model_iter_nth_child

• gtk_tree_model_iter_parent

Almost all functions are more or less straight-forward and self-explanatory in connection with the API reference
descriptions, so you should be able to jump right into the code and see how it works.

After the tree model implementation we have those functions that are specific to our custom model.
custom_list_new will create a new custom list for us, and custom_list_append_record will append a new
record to the end of the list. Note the call to gtk_tree_model_row_inserted at the end of our append function,
which emits a "row-inserted" signal on the model and informs all interested objects (tree views, tree row
references) that a new row has been inserted, and where it has been inserted.

You will need to emit tree model signals whenever something changes, e.g. rows are inserted, removed, or re-
ordered, or when a row changes from a child-less row to a row which has children, or if a row’s data changes.
Here are the functions you need to use in those cases (we only implement row insertions here - other cases are left
as an exercise for the reader):

• gtk_tree_model_row_inserted

• gtk_tree_model_row_changed (makes tree view redraw that row)

• gtk_tree_model_row_has_child_toggled

• gtk_tree_model_row_deleted

• gtk_tree_model_rows_reordered (note bug 124790)

And that is all you have to do to write a custom model.

58

Chapter 11. Writing Custom Models

11.4. From a List to a Tree
Writing a custom model for a tree is a bit trickier than a simple list model, but follows the same pattern. Basically
you just need to extend the above model to cater for the case of children. You could do this by keeping track of
the whole tree hierarchy in the CustomList structure, using GLib N-ary trees for example, or you could do this
by keeping track of each row’s children within the row’s CustomRecord structure, keeping only a pointer to the
(invisible) root record in the CustomList structure.

TODO: do we need anything else here?

11.5. Additional interfaces, here: the GtkTreeSortable interface
A custom model can implement additional interfaces to extend its functionality. Additional interfaces are:

• GtkTreeSortableIface

• GtkTreeDragDestIface

• GtkTreeDragSourceIface

Here, we will show how to implement additional interfaces at the example of the GtkTreeSortable interface,
which we will implement only partially (enough to make it functional and useful though).

Three things are necessary to add another interface: we will need to register the interface with our model in
custom_list_get_type , provide an interface init function where we set the interface to our own implementation
of the interface functions, and then provide the implementation of those functions.

Firstly, we need to provide the function prototypes for our functions at the beginning of the file:

/* custom-list.c */

...

/* -- GtkTreeSortable interface functions -- */

static gboolean custom_list_sortable_get_sort_column_id (GtkTreeSortable *sortable,
gint *sort_col_id,
GtkSortType *order);

static void custom_list_sortable_set_sort_column_id (GtkTreeSortable *sortable,
gint sort_col_id,
GtkSortType order);

static void custom_list_sortable_set_sort_func (GtkTreeSortable *sortable,
gint sort_col_id,
GtkTreeIterCompareFunc sort_func,
gpointer user_data,
GtkDestroyNotify destroy_func);

static void custom_list_sortable_set_default_sort_func (GtkTreeSortable *sortable,
GtkTreeIterCompareFunc sort_func,
gpointer user_data,
GtkDestroyNotify destroy_func);

static gboolean custom_list_sortable_has_default_sort_func (GtkTreeSortable *sortable);

static void custom_list_resort (CustomList *custom_list);

...

Next, let’s extend our CustomList structure with a field for the currently active sort column ID and one for the
sort order, and add an enum for the sort column IDs:

/* custom-list.h */

enum
{

SORT_ID_NONE = 0,
SORT_ID_NAME,

59

Chapter 11. Writing Custom Models

SORT_ID_YEAR_BORN,
};

...

struct _CustomList
{

GObject parent;

guint num_rows; /* number of rows that we have */
CustomRecord **rows; /* a dynamically allocated array of pointers to the

* CustomRecord structure for each row */

gint n_columns;
GType column_types[CUSTOM_LIST_N_COLUMNS];

gint sort_id;
GtkSortType sort_order;

gint stamp; /* Random integer to check whether an iter belongs to our model */
};

...

Now, we make sure we initialise the new fields in custom_list_new , and add our new interface:

...

static void custom_list_sortable_init (GtkTreeSortableIface *iface);

...

void
custom_list_init (CustomList *custom_list)
{

...
custom_list->sort_id = SORT_ID_NONE;
custom_list->sort_order = GTK_SORT_ASCENDING;
...

}

GType
custom_list_get_type (void)
{

...
/* Add GtkTreeSortable interface */
if (1)
{

static const GInterfaceInfo tree_sortable_info =
{

(GInterfaceInitFunc) custom_list_sortable_init,
NULL,
NULL

};

g_type_add_interface_static (custom_list_type, GTK_TYPE_TREE_SORTABLE, &tree_sortable_info);
}
...

}

static void
custom_list_sortable_init (GtkTreeSortableIface *iface)
{

iface->get_sort_column_id = custom_list_sortable_get_sort_column_id;
iface->set_sort_column_id = custom_list_sortable_set_sort_column_id;
iface->set_sort_func = custom_list_sortable_set_sort_func; /* NOT SUPPORTED */
iface->set_default_sort_func = custom_list_sortable_set_default_sort_func; /* NOT SUPPORTED */
iface->has_default_sort_func = custom_list_sortable_has_default_sort_func; /* NOT SUPPORTED */

}

60

Chapter 11. Writing Custom Models

Now that we have finally taken care of the administrativa, we implement the tree sortable interface functions:

static gboolean
custom_list_sortable_get_sort_column_id (GtkTreeSortable *sortable,

gint *sort_col_id,
GtkSortType *order)

{
CustomList *custom_list;

g_return_val_if_fail (sortable != NULL , FALSE);
g_return_val_if_fail (CUSTOM_IS_LIST(sortable), FALSE);

custom_list = CUSTOM_LIST(sortable);

if (sort_col_id)
*sort_col_id = custom_list->sort_id;

if (order)
*order = custom_list->sort_order;

return TRUE;
}

static void
custom_list_sortable_set_sort_column_id (GtkTreeSortable *sortable,

gint sort_col_id,
GtkSortType order)

{
CustomList *custom_list;

g_return_if_fail (sortable != NULL);
g_return_if_fail (CUSTOM_IS_LIST(sortable));

custom_list = CUSTOM_LIST(sortable);

if (custom_list->sort_id == sort_col_id && custom_list->sort_order == order)
return;

custom_list->sort_id = sort_col_id;
custom_list->sort_order = order;

custom_list_resort(custom_list);

/* emit "sort-column-changed" signal to tell any tree views
* that the sort column has changed (so the little arrow
* in the column header of the sort column is drawn
* in the right column) */

gtk_tree_sortable_sort_column_changed(sortable);
}

static void
custom_list_sortable_set_sort_func (GtkTreeSortable *sortable,

gint sort_col_id,
GtkTreeIterCompareFunc sort_func,
gpointer user_data,
GtkDestroyNotify destroy_func)

{
g_warning ("%s is not supported by the CustomList model.\n", __FUNCTION__);

}

static void
custom_list_sortable_set_default_sort_func (GtkTreeSortable *sortable,

GtkTreeIterCompareFunc sort_func,
gpointer user_data,

61

Chapter 11. Writing Custom Models

GtkDestroyNotify destroy_func)
{

g_warning ("%s is not supported by the CustomList model.\n", __FUNCTION__);
}

static gboolean
custom_list_sortable_has_default_sort_func (GtkTreeSortable *sortable)
{

return FALSE;
}

Now, last but not least, the only thing missing is the function that does the actual sorting. We do not implement
set_sort_func , set_default_sort_func and set_has_default_sort_func because we use our own internal
sort function here.

The actual sorting is done using GLib’s g_qsort_with_data function, which sorts an array using the QuickSort
algorithm. Note how we notify the tree view and other objects of the new row order by emitting the "rows-
reordered" signal on the tree model.

static gint
custom_list_compare_records (gint sort_id, CustomRecord *a, CustomRecord *b)
{

switch(sort_id)
{

case SORT_ID_NONE:
return 0;

case SORT_ID_NAME:
{

if ((a->name) && (b->name))
return g_utf8_collate(a->name, b->name);

if (a->name == b->name)
return 0; /* both are NULL */

else
return (a->name == NULL) ? -1 : 1;

}

case SORT_ID_YEAR_BORN:
{

if (a->year_born == b->year_born)
return 0;

return (a->year_born > b->year_born) ? 1 : -1;
}

}

g_return_val_if_reached(0);
}

static gint
custom_list_qsort_compare_func (CustomRecord **a, CustomRecord **b, CustomList *custom_list)
{

gint ret;

g_assert ((a) && (b) && (custom_list));

ret = custom_list_compare_records(custom_list->sort_id, *a, *b);

/* Swap -1 and 1 if sort order is reverse */
if (ret != 0 && custom_list->sort_order == GTK_SORT_DESCENDING)

ret = (ret < 0) ? 1 : -1;

return ret;
}

62

Chapter 11. Writing Custom Models

static void
custom_list_resort (CustomList *custom_list)
{

GtkTreePath *path;
gint *neworder, i;

g_return_if_fail (custom_list != NULL);
g_return_if_fail (CUSTOM_IS_LIST(custom_list));

if (custom_list->sort_id == SORT_ID_NONE)
return;

if (custom_list->num_rows == 0)
return;

/* resort */
g_qsort_with_data(custom_list->rows,

custom_list->num_rows,
sizeof(CustomRecord*),
(GCompareDataFunc) custom_list_qsort_compare_func,
custom_list);

/* let other objects know about the new order */
neworder = g_new0(gint, custom_list->num_rows);

for (i = 0; i < custom_list->num_rows; ++i)
{

/* Note that the API reference might be wrong about
* this, see bug number 124790 on bugs.gnome.org.
* Both will work, but one will give you ’jumpy’
* selections after row reordering. */

/* neworder[(custom_list->rows[i])->pos] = i; */
neworder[i] = (custom_list->rows[i])->pos;
(custom_list->rows[i])->pos = i;

}

path = gtk_tree_path_new();

gtk_tree_model_rows_reordered(GTK_TREE_MODEL(custom_list), path, NULL, neworder);

gtk_tree_path_free(path);
g_free(neworder);

}

Finally, we should make sure that the model is resorted after we have inserted a new row by adding a call to
custom_list_resort to the end of custom_list_append :

...
void
custom_list_append_record (CustomList *custom_list, const gchar *name, guint year_born)
{

...

custom_list_resort(custom_list);
}

And that is it. Adding two calls to gtk_tree_view_column_set_sort_column_id in main.c is left as yet another
exercise for the reader.

If you are interested in seeing string sorting speed issues in action, you should modify main.c like this:

GtkWidget *
create_view_and_model (void)
{

gint i;
...
for (i=0; i < 1000; ++i)
{

fill_model(customlist);

63

Chapter 11. Writing Custom Models

}
...

}

Most likely, sorting 24000 rows by name will take up to several seconds now. Now, if you go back to
custom_list_compare_records and replace the call to g_utf8_collate with:

static gint
custom_list_compare_records (gint sort_id, CustomRecord *a, CustomRecord *b)
{

...

if ((a->name) && (b->name))
return strcmp(a->name_collate_key,b->name_collate_key);

...
}

... then you should hopefully register a dramatic speed increase when sorting by name.

11.6. Working Example: Custom List Model Source Code
Here is the complete source code for the custom list model presented above. Compile with:

gcc -o customlist custom-list.c main.c ‘pkg-config --cflags --libs gtk+-2.0‘

• custom-list.h

• custom-list.c

• main.c

11.6.1. custom-list.h

#ifndef _custom_list_h_included_
#define _custom_list_h_included_

#include <gtk/gtk.h>

/* Some boilerplate GObject defines. ’klass’ is used
* instead of ’class’, because ’class’ is a C++ keyword */

#define CUSTOM_TYPE_LIST (custom_list_get_type ())
#define CUSTOM_LIST(obj) (G_TYPE_CHECK_INSTANCE_CAST ((obj), CUSTOM_TYPE_LIST, CustomList))
#define CUSTOM_LIST_CLASS(klass) (G_TYPE_CHECK_CLASS_CAST ((klass), CUSTOM_TYPE_LIST, CustomListClass))
#define CUSTOM_IS_LIST(obj) (G_TYPE_CHECK_INSTANCE_TYPE ((obj), CUSTOM_TYPE_LIST))
#define CUSTOM_IS_LIST_CLASS(klass) (G_TYPE_CHECK_CLASS_TYPE ((klass), CUSTOM_TYPE_LIST))
#define CUSTOM_LIST_GET_CLASS(obj) (G_TYPE_INSTANCE_GET_CLASS ((obj), CUSTOM_TYPE_LIST, CustomListClass))

/* The data columns that we export via the tree model interface */

enum
{

CUSTOM_LIST_COL_RECORD = 0,
CUSTOM_LIST_COL_NAME,
CUSTOM_LIST_COL_YEAR_BORN,
CUSTOM_LIST_N_COLUMNS,

} ;

typedef struct _CustomRecord CustomRecord;
typedef struct _CustomList CustomList;
typedef struct _CustomListClass CustomListClass;

64

Chapter 11. Writing Custom Models

/* CustomRecord: this structure represents a row */

struct _CustomRecord
{

/* data - you can extend this */
gchar *name;
gchar *name_collate_key;
guint year_born;

/* admin stuff used by the custom list model */
guint pos; /* pos within the array */

};

/* CustomList: this structure contains everything we need for our
* model implementation. You can add extra fields to
* this structure, e.g. hashtables to quickly lookup
* rows or whatever else you might need, but it is
* crucial that ’parent’ is the first member of the
* structure. */

struct _CustomList
{

GObject parent; /* this MUST be the first member */

guint num_rows; /* number of rows that we have */
CustomRecord **rows; /* a dynamically allocated array of pointers to

* the CustomRecord structure for each row */

/* These two fields are not absolutely necessary, but they */
/* speed things up a bit in our get_value implementation */
gint n_columns;
GType column_types[CUSTOM_LIST_N_COLUMNS];

gint stamp; /* Random integer to check whether an iter belongs to our model */
};

/* CustomListClass: more boilerplate GObject stuff */

struct _CustomListClass
{

GObjectClass parent_class;
};

GType custom_list_get_type (void);

CustomList *custom_list_new (void);

void custom_list_append_record (CustomList *custom_list,
const gchar *name,
guint year_born);

#endif /* _custom_list_h_included_ */

• custom-list.h

• custom-list.c

• main.c

65

Chapter 11. Writing Custom Models

11.6.2. custom-list.c

#include "custom-list.h"

/* boring declarations of local functions */

static void custom_list_init (CustomList *pkg_tree);

static void custom_list_class_init (CustomListClass *klass);

static void custom_list_tree_model_init (GtkTreeModelIface *iface);

static void custom_list_finalize (GObject *object);

static GtkTreeModelFlags custom_list_get_flags (GtkTreeModel *tree_model);

static gint custom_list_get_n_columns (GtkTreeModel *tree_model);

static GType custom_list_get_column_type (GtkTreeModel *tree_model,
gint index);

static gboolean custom_list_get_iter (GtkTreeModel *tree_model,
GtkTreeIter *iter,
GtkTreePath *path);

static GtkTreePath *custom_list_get_path (GtkTreeModel *tree_model,
GtkTreeIter *iter);

static void custom_list_get_value (GtkTreeModel *tree_model,
GtkTreeIter *iter,
gint column,
GValue *value);

static gboolean custom_list_iter_next (GtkTreeModel *tree_model,
GtkTreeIter *iter);

static gboolean custom_list_iter_children (GtkTreeModel *tree_model,
GtkTreeIter *iter,
GtkTreeIter *parent);

static gboolean custom_list_iter_has_child (GtkTreeModel *tree_model,
GtkTreeIter *iter);

static gint custom_list_iter_n_children (GtkTreeModel *tree_model,
GtkTreeIter *iter);

static gboolean custom_list_iter_nth_child (GtkTreeModel *tree_model,
GtkTreeIter *iter,
GtkTreeIter *parent,
gint n);

static gboolean custom_list_iter_parent (GtkTreeModel *tree_model,
GtkTreeIter *iter,
GtkTreeIter *child);

static GObjectClass *parent_class = NULL; /* GObject stuff - nothing to worry about */

/***
*
* custom_list_get_type: here we register our new type and its interfaces
* with the type system. If you want to implement
* additional interfaces like GtkTreeSortable, you
* will need to do it here.
*
***/

66

Chapter 11. Writing Custom Models

GType
custom_list_get_type (void)
{

static GType custom_list_type = 0;

if (custom_list_type)
return custom_list_type;

/* Some boilerplate type registration stuff */
if (1)
{

static const GTypeInfo custom_list_info =
{

sizeof (CustomListClass),
NULL, /* base_init */
NULL, /* base_finalize */
(GClassInitFunc) custom_list_class_init,
NULL, /* class finalize */
NULL, /* class_data */
sizeof (CustomList),
0, /* n_preallocs */
(GInstanceInitFunc) custom_list_init

};

custom_list_type = g_type_register_static (G_TYPE_OBJECT, "CustomList",
&custom_list_info, (GTypeFlags)0);

}

/* Here we register our GtkTreeModel interface with the type system */
if (1)
{

static const GInterfaceInfo tree_model_info =
{

(GInterfaceInitFunc) custom_list_tree_model_init,
NULL,
NULL

};

g_type_add_interface_static (custom_list_type, GTK_TYPE_TREE_MODEL, &tree_model_info);
}

return custom_list_type;
}

/***
*
* custom_list_class_init: more boilerplate GObject/GType stuff.
* Init callback for the type system,
* called once when our new class is created.
*
***/

static void
custom_list_class_init (CustomListClass *klass)
{

GObjectClass *object_class;

parent_class = (GObjectClass*) g_type_class_peek_parent (klass);
object_class = (GObjectClass*) klass;

object_class->finalize = custom_list_finalize;
}

/***
*
* custom_list_tree_model_init: init callback for the interface registration
* in custom_list_get_type. Here we override
* the GtkTreeModel interface functions that
* we implement.
*

67

Chapter 11. Writing Custom Models

***/

static void
custom_list_tree_model_init (GtkTreeModelIface *iface)
{

iface->get_flags = custom_list_get_flags;
iface->get_n_columns = custom_list_get_n_columns;
iface->get_column_type = custom_list_get_column_type;
iface->get_iter = custom_list_get_iter;
iface->get_path = custom_list_get_path;
iface->get_value = custom_list_get_value;
iface->iter_next = custom_list_iter_next;
iface->iter_children = custom_list_iter_children;
iface->iter_has_child = custom_list_iter_has_child;
iface->iter_n_children = custom_list_iter_n_children;
iface->iter_nth_child = custom_list_iter_nth_child;
iface->iter_parent = custom_list_iter_parent;

}

/***
*
* custom_list_init: this is called everytime a new custom list object
* instance is created (we do that in custom_list_new).
* Initialise the list structure’s fields here.
*
***/

static void
custom_list_init (CustomList *custom_list)
{

custom_list->n_columns = CUSTOM_LIST_N_COLUMNS;

custom_list->column_types[0] = G_TYPE_POINTER; /* CUSTOM_LIST_COL_RECORD */
custom_list->column_types[1] = G_TYPE_STRING; /* CUSTOM_LIST_COL_NAME */
custom_list->column_types[2] = G_TYPE_UINT; /* CUSTOM_LIST_COL_YEAR_BORN */

g_assert (CUSTOM_LIST_N_COLUMNS == 3);

custom_list->num_rows = 0;
custom_list->rows = NULL;

custom_list->stamp = g_random_int(); /* Random int to check whether an iter belongs to our model */

}

/***
*
* custom_list_finalize: this is called just before a custom list is
* destroyed. Free dynamically allocated memory here.
*
***/

static void
custom_list_finalize (GObject *object)
{
/* CustomList *custom_list = CUSTOM_LIST(object); */

/* free all records and free all memory used by the list */
#warning IMPLEMENT

/* must chain up - finalize parent */
(* parent_class->finalize) (object);

}

/***
*
* custom_list_get_flags: tells the rest of the world whether our tree model
* has any special characteristics. In our case,

68

Chapter 11. Writing Custom Models

* we have a list model (instead of a tree), and each
* tree iter is valid as long as the row in question
* exists, as it only contains a pointer to our struct.
*
***/

static GtkTreeModelFlags
custom_list_get_flags (GtkTreeModel *tree_model)
{

g_return_val_if_fail (CUSTOM_IS_LIST(tree_model), (GtkTreeModelFlags)0);

return (GTK_TREE_MODEL_LIST_ONLY | GTK_TREE_MODEL_ITERS_PERSIST);
}

/***
*
* custom_list_get_n_columns: tells the rest of the world how many data
* columns we export via the tree model interface
*
***/

static gint
custom_list_get_n_columns (GtkTreeModel *tree_model)
{

g_return_val_if_fail (CUSTOM_IS_LIST(tree_model), 0);

return CUSTOM_LIST(tree_model)->n_columns;
}

/***
*
* custom_list_get_column_type: tells the rest of the world which type of
* data an exported model column contains
*
***/

static GType
custom_list_get_column_type (GtkTreeModel *tree_model,

gint index)
{

g_return_val_if_fail (CUSTOM_IS_LIST(tree_model), G_TYPE_INVALID);
g_return_val_if_fail (index < CUSTOM_LIST(tree_model)->n_columns && index >= 0, G_TYPE_INVALID);

return CUSTOM_LIST(tree_model)->column_types[index];
}

/***
*
* custom_list_get_iter: converts a tree path (physical position) into a
* tree iter structure (the content of the iter
* fields will only be used internally by our model).
* We simply store a pointer to our CustomRecord
* structure that represents that row in the tree iter.
*
***/

static gboolean
custom_list_get_iter (GtkTreeModel *tree_model,

GtkTreeIter *iter,
GtkTreePath *path)

{
CustomList *custom_list;
CustomRecord *record;
gint *indices, n, depth;

g_assert(CUSTOM_IS_LIST(tree_model));
g_assert(path!=NULL);

69

Chapter 11. Writing Custom Models

custom_list = CUSTOM_LIST(tree_model);

indices = gtk_tree_path_get_indices(path);
depth = gtk_tree_path_get_depth(path);

/* we do not allow children */
g_assert(depth == 1); /* depth 1 = top level; a list only has top level nodes and no children */

n = indices[0]; /* the n-th top level row */

if (n >= custom_list->num_rows || n < 0)
return FALSE;

record = custom_list->rows[n];

g_assert(record != NULL);
g_assert(record->pos == n);

/* We simply store a pointer to our custom record in the iter */
iter->stamp = custom_list->stamp;
iter->user_data = record;
iter->user_data2 = NULL; /* unused */
iter->user_data3 = NULL; /* unused */

return TRUE;
}

/***
*
* custom_list_get_path: converts a tree iter into a tree path (ie. the
* physical position of that row in the list).
*
***/

static GtkTreePath *
custom_list_get_path (GtkTreeModel *tree_model,

GtkTreeIter *iter)
{

GtkTreePath *path;
CustomRecord *record;
CustomList *custom_list;

g_return_val_if_fail (CUSTOM_IS_LIST(tree_model), NULL);
g_return_val_if_fail (iter != NULL, NULL);
g_return_val_if_fail (iter->user_data != NULL, NULL);

custom_list = CUSTOM_LIST(tree_model);

record = (CustomRecord*) iter->user_data;

path = gtk_tree_path_new();
gtk_tree_path_append_index(path, record->pos);

return path;
}

/***
*
* custom_list_get_value: Returns a row’s exported data columns
* (_get_value is what gtk_tree_model_get uses)
*
***/

static void
custom_list_get_value (GtkTreeModel *tree_model,

GtkTreeIter *iter,
gint column,
GValue *value)

{

70

Chapter 11. Writing Custom Models

CustomRecord *record;
CustomList *custom_list;

g_return_if_fail (CUSTOM_IS_LIST (tree_model));
g_return_if_fail (iter != NULL);
g_return_if_fail (column < CUSTOM_LIST(tree_model)->n_columns);

g_value_init (value, CUSTOM_LIST(tree_model)->column_types[column]);

custom_list = CUSTOM_LIST(tree_model);

record = (CustomRecord*) iter->user_data;

g_return_if_fail (record != NULL);

if(record->pos >= custom_list->num_rows)
g_return_if_reached();

switch(column)
{

case CUSTOM_LIST_COL_RECORD:
g_value_set_pointer(value, record);
break;

case CUSTOM_LIST_COL_NAME:
g_value_set_string(value, record->name);
break;

case CUSTOM_LIST_COL_YEAR_BORN:
g_value_set_uint(value, record->year_born);
break;

}
}

/***
*
* custom_list_iter_next: Takes an iter structure and sets it to point
* to the next row.
*
***/

static gboolean
custom_list_iter_next (GtkTreeModel *tree_model,

GtkTreeIter *iter)
{

CustomRecord *record, *nextrecord;
CustomList *custom_list;

g_return_val_if_fail (CUSTOM_IS_LIST (tree_model), FALSE);

if (iter == NULL || iter->user_data == NULL)
return FALSE;

custom_list = CUSTOM_LIST(tree_model);

record = (CustomRecord *) iter->user_data;

/* Is this the last record in the list? */
if ((record->pos + 1) >= custom_list->num_rows)

return FALSE;

nextrecord = custom_list->rows[(record->pos + 1)];

g_assert (nextrecord != NULL);
g_assert (nextrecord->pos == (record->pos + 1));

iter->stamp = custom_list->stamp;
iter->user_data = nextrecord;

return TRUE;

71

Chapter 11. Writing Custom Models

}

/***
*
* custom_list_iter_children: Returns TRUE or FALSE depending on whether
* the row specified by ’parent’ has any children.
* If it has children, then ’iter’ is set to
* point to the first child. Special case: if
* ’parent’ is NULL, then the first top-level
* row should be returned if it exists.
*
***/

static gboolean
custom_list_iter_children (GtkTreeModel *tree_model,

GtkTreeIter *iter,
GtkTreeIter *parent)

{
CustomList *custom_list;

g_return_val_if_fail (parent == NULL || parent->user_data != NULL, FALSE);

/* this is a list, nodes have no children */
if (parent)

return FALSE;

/* parent == NULL is a special case; we need to return the first top-level row */

g_return_val_if_fail (CUSTOM_IS_LIST (tree_model), FALSE);

custom_list = CUSTOM_LIST(tree_model);

/* No rows => no first row */
if (custom_list->num_rows == 0)

return FALSE;

/* Set iter to first item in list */
iter->stamp = custom_list->stamp;
iter->user_data = custom_list->rows[0];

return TRUE;
}

/***
*
* custom_list_iter_has_child: Returns TRUE or FALSE depending on whether
* the row specified by ’iter’ has any children.
* We only have a list and thus no children.
*
***/

static gboolean
custom_list_iter_has_child (GtkTreeModel *tree_model,

GtkTreeIter *iter)
{

return FALSE;
}

/***
*
* custom_list_iter_n_children: Returns the number of children the row
* specified by ’iter’ has. This is usually 0,
* as we only have a list and thus do not have
* any children to any rows. A special case is
* when ’iter’ is NULL, in which case we need
* to return the number of top-level nodes,
* ie. the number of rows in our list.
*

72

Chapter 11. Writing Custom Models

***/

static gint
custom_list_iter_n_children (GtkTreeModel *tree_model,

GtkTreeIter *iter)
{

CustomList *custom_list;

g_return_val_if_fail (CUSTOM_IS_LIST (tree_model), -1);
g_return_val_if_fail (iter == NULL || iter->user_data != NULL, FALSE);

custom_list = CUSTOM_LIST(tree_model);

/* special case: if iter == NULL, return number of top-level rows */
if (!iter)

return custom_list->num_rows;

return 0; /* otherwise, this is easy again for a list */
}

/***
*
* custom_list_iter_nth_child: If the row specified by ’parent’ has any
* children, set ’iter’ to the n-th child and
* return TRUE if it exists, otherwise FALSE.
* A special case is when ’parent’ is NULL, in
* which case we need to set ’iter’ to the n-th
* row if it exists.
*
***/

static gboolean
custom_list_iter_nth_child (GtkTreeModel *tree_model,

GtkTreeIter *iter,
GtkTreeIter *parent,
gint n)

{
CustomRecord *record;
CustomList *custom_list;

g_return_val_if_fail (CUSTOM_IS_LIST (tree_model), FALSE);

custom_list = CUSTOM_LIST(tree_model);

/* a list has only top-level rows */
if(parent)

return FALSE;

/* special case: if parent == NULL, set iter to n-th top-level row */

if(n >= custom_list->num_rows)
return FALSE;

record = custom_list->rows[n];

g_assert(record != NULL);
g_assert(record->pos == n);

iter->stamp = custom_list->stamp;
iter->user_data = record;

return TRUE;
}

/***
*
* custom_list_iter_parent: Point ’iter’ to the parent node of ’child’. As
* we have a list and thus no children and no
* parents of children, we can just return FALSE.

73

Chapter 11. Writing Custom Models

*
***/

static gboolean
custom_list_iter_parent (GtkTreeModel *tree_model,

GtkTreeIter *iter,
GtkTreeIter *child)

{
return FALSE;

}

/***
*
* custom_list_new: This is what you use in your own code to create a
* new custom list tree model for you to use.
*
***/

CustomList *
custom_list_new (void)
{

CustomList *newcustomlist;

newcustomlist = (CustomList*) g_object_new (CUSTOM_TYPE_LIST, NULL);

g_assert(newcustomlist != NULL);

return newcustomlist;
}

/***
*
* custom_list_append_record: Empty lists are boring. This function can
* be used in your own code to add rows to the
* list. Note how we emit the "row-inserted"
* signal after we have appended the row
* internally, so the tree view and other
* interested objects know about the new row.
*
***/

void
custom_list_append_record (CustomList *custom_list,

const gchar *name,
guint year_born)

{
GtkTreeIter iter;
GtkTreePath *path;
CustomRecord *newrecord;
gulong newsize;
guint pos;

g_return_if_fail (CUSTOM_IS_LIST(custom_list));
g_return_if_fail (name != NULL);

pos = custom_list->num_rows;

custom_list->num_rows++;

newsize = custom_list->num_rows * sizeof(CustomRecord*);

custom_list->rows = g_realloc(custom_list->rows, newsize);

newrecord = g_new0(CustomRecord, 1);

newrecord->name = g_strdup(name);
newrecord->name_collate_key = g_utf8_collate_key(name,-1); /* for fast sorting, used later */
newrecord->year_born = year_born;

74

Chapter 11. Writing Custom Models

custom_list->rows[pos] = newrecord;
newrecord->pos = pos;

/* inform the tree view and other interested objects
* (e.g. tree row references) that we have inserted
* a new row, and where it was inserted */

path = gtk_tree_path_new();
gtk_tree_path_append_index(path, newrecord->pos);

custom_list_get_iter(GTK_TREE_MODEL(custom_list), &iter, path);

gtk_tree_model_row_inserted(GTK_TREE_MODEL(custom_list), path, &iter);

gtk_tree_path_free(path);
}

• custom-list.h

• custom-list.c

• main.c

11.6.3. main.c
The following couple of lines provide a working test case that makes use of our custom list. It creates one of our
custom lists, adds some records, and displays it in a tree view.

#include "custom-list.h"
#include <stdlib.h>

void
fill_model (CustomList *customlist)
{

const gchar *firstnames[] = { "Joe", "Jane", "William", "Hannibal", "Timothy", "Gargamel", NULL } ;
const gchar *surnames[] = { "Grokowich", "Twitch", "Borheimer", "Bork", NULL } ;
const gchar **fname, **sname;

for (sname = surnames; *sname != NULL; sname++)
{

for (fname = firstnames; *fname != NULL; fname++)
{

gchar *name = g_strdup_printf ("%s %s", *fname, *sname);

custom_list_append_record (customlist, name, 1900 + (guint) (103.0*rand()/(RAND_MAX+1900.0)));

g_free(name);
}

}
}

GtkWidget *
create_view_and_model (void)
{

GtkTreeViewColumn *col;
GtkCellRenderer *renderer;
CustomList *customlist;
GtkWidget *view;

customlist = custom_list_new();
fill_model(customlist);

view = gtk_tree_view_new_with_model(GTK_TREE_MODEL(customlist));

g_object_unref(customlist); /* destroy store automatically with view */

75

Chapter 11. Writing Custom Models

renderer = gtk_cell_renderer_text_new();
col = gtk_tree_view_column_new();

gtk_tree_view_column_pack_start (col, renderer, TRUE);
gtk_tree_view_column_add_attribute (col, renderer, "text", CUSTOM_LIST_COL_NAME);
gtk_tree_view_column_set_title (col, "Name");
gtk_tree_view_append_column(GTK_TREE_VIEW(view),col);

renderer = gtk_cell_renderer_text_new();
col = gtk_tree_view_column_new();
gtk_tree_view_column_pack_start (col, renderer, TRUE);
gtk_tree_view_column_add_attribute (col, renderer, "text", CUSTOM_LIST_COL_YEAR_BORN);
gtk_tree_view_column_set_title (col, "Year Born");
gtk_tree_view_append_column(GTK_TREE_VIEW(view),col);

return view;
}

int
main (int argc, char **argv)
{

GtkWidget *window, *view, *scrollwin;

gtk_init(&argc,&argv);

window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_window_set_default_size (GTK_WINDOW(window), 200, 400);
g_signal_connect(window, "delete_event", gtk_main_quit, NULL);

scrollwin = gtk_scrolled_window_new(NULL,NULL);

view = create_view_and_model();

gtk_container_add(GTK_CONTAINER(scrollwin), view);
gtk_container_add(GTK_CONTAINER(window), scrollwin);

gtk_widget_show_all(window);

gtk_main();

return 0;
}

76

Chapter 12. Writing Custom Cell Renderers

The cell renderers that come with Gtk+ should be sufficient for most purposes, but there might be occasions where
you want to display something in a tree view that you cannot display with the provided cell renderers, or where
you want to derive from one of the provided cell renderers to extend its functionality.

You can do this by writing a new object that derives from GtkCellRenderer (or even one of the other cell renderers
if you just want to extend an existing one).

Three things you need to do in the course of that:

• Register some new properties that your renderer needs with the type system and write your own set_property
and get_property functions to set and get your new renderer’s properties.

• Write your own cell_renderer_get_size function and override the parent object’s function (usually the par-
ent is of type GtkCellRenderer . Note that you should honour the standard properties for padding and cell
alignment of the parent object here.

• Write your own cell_renderer_render function and override the parent object’s function. This function does
the actual rendering.

The GObject type system stuff of writing a new cell renderer is similar to what we have done above when writing
a custom tree model, and is relatively straight forward in this case. Copy and paste and modify according to your
own needs.

Good examples of cell renderer code to look at or even modify are GtkCellRendererPixbuf and
GtkCellRendererToggle in the Gtk+ source code tree. Both cases are less than five hundred lines of code to look
at and thus should be fairly easy to digest.

12.1. Working Example: a Progress Bar Cell Renderer
In the following we will write a custom cell renderer to render progress bars into a tree view (the code was "heavily
inspired" by Sean Egan’s progress bar cell renderer implementation in GAIM):

• custom-cell-renderer-progressbar.h

• custom-cell-renderer-progressbar.c

• main.c

12.1.1. custom-cell-renderer-progressbar.h
The header file consists of the usual GObject type cast and type check defines and our
CustomCellRendererProgress structure. As the type of the parent indicates, we derive from GtkCellRenderer .
The parent object must always be the first item in the structure (note also that it is not a pointer to an object, but
the parent object structure itself embedded in our structure).

Our CustomCellRendererProgress structure is fairly uneventful and contains only a double precision float vari-
able in which we store our new "percentage" property (which will determine how long the progressbar is going
to be).

#ifndef _custom_cell_renderer_progressbar_included_
#define _custom_cell_renderer_progressbar_included_

#include <gtk/gtk.h>

/* Some boilerplate GObject type check and type cast macros.
* ’klass’ is used here instead of ’class’, because ’class’
* is a c++ keyword */

#define CUSTOM_TYPE_CELL_RENDERER_PROGRESS (custom_cell_renderer_progress_get_type())
#define CUSTOM_CELL_RENDERER_PROGRESS(obj) (G_TYPE_CHECK_INSTANCE_CAST((obj), CUSTOM_TYPE_CELL_RENDERER_PROGRESS, CustomCellRendererProgress))
#define CUSTOM_CELL_RENDERER_PROGRESS_CLASS(klass) (G_TYPE_CHECK_CLASS_CAST ((klass), CUSTOM_TYPE_CELL_RENDERER_PROGRESS, CustomCellRendererProgressClass))
#define CUSTOM_IS_CELL_PROGRESS_PROGRESS(obj) (G_TYPE_CHECK_INSTANCE_TYPE ((obj), CUSTOM_TYPE_CELL_RENDERER_PROGRESS))
#define CUSTOM_IS_CELL_PROGRESS_PROGRESS_CLASS(klass) (G_TYPE_CHECK_CLASS_TYPE ((klass), CUSTOM_TYPE_CELL_RENDERER_PROGRESS))
#define CUSTOM_CELL_RENDERER_PROGRESS_GET_CLASS(obj) (G_TYPE_INSTANCE_GET_CLASS ((obj), CUSTOM_TYPE_CELL_RENDERER_PROGRESS, CustomCellRendererProgressClass))

typedef struct _CustomCellRendererProgress CustomCellRendererProgress;
typedef struct _CustomCellRendererProgressClass CustomCellRendererProgressClass;

77

Chapter 12. Writing Custom Cell Renderers

/* CustomCellRendererProgress: Our custom cell renderer
* structure. Extend according to need */

struct _CustomCellRendererProgress
{

GtkCellRenderer parent;

gdouble progress;
};

struct _CustomCellRendererProgressClass
{

GtkCellRendererClass parent_class;
};

GType custom_cell_renderer_progress_get_type (void);

GtkCellRenderer *custom_cell_renderer_progress_new (void);

#endif /* _custom_cell_renderer_progressbar_included_ */

12.1.2. custom-cell-renderer-progressbar.c
The code contains everything as described above, so let’s jump right into it:

#include "custom-cell-renderer-progressbar.h"

/* This is based mainly on GtkCellRendererProgress
* in GAIM, written and (c) 2002 by Sean Egan
* (Licensed under the GPL), which in turn is
* based on Gtk’s GtkCellRenderer[Text|Toggle|Pixbuf]
* implementation by Jonathan Blandford */

/* Some boring function declarations: GObject type system stuff */

static void custom_cell_renderer_progress_init (CustomCellRendererProgress *cellprogress);

static void custom_cell_renderer_progress_class_init (CustomCellRendererProgressClass *klass);

static void custom_cell_renderer_progress_get_property (GObject *object,
guint param_id,
GValue *value,
GParamSpec *pspec);

static void custom_cell_renderer_progress_set_property (GObject *object,
guint param_id,
const GValue *value,
GParamSpec *pspec);

static void custom_cell_renderer_progress_finalize (GObject *gobject);

/* These functions are the heart of our custom cell renderer: */

static void custom_cell_renderer_progress_get_size (GtkCellRenderer *cell,
GtkWidget *widget,
GdkRectangle *cell_area,
gint *x_offset,
gint *y_offset,
gint *width,
gint *height);

static void custom_cell_renderer_progress_render (GtkCellRenderer *cell,
GdkWindow *window,
GtkWidget *widget,

78

Chapter 12. Writing Custom Cell Renderers

GdkRectangle *background_area,
GdkRectangle *cell_area,
GdkRectangle *expose_area,
guint flags);

enum
{

PROP_PERCENTAGE = 1,
};

static gpointer parent_class;

/***
*
* custom_cell_renderer_progress_get_type: here we register our type with
* the GObject type system if we
* haven’t done so yet. Everything
* else is done in the callbacks.
*
***/

GType
custom_cell_renderer_progress_get_type (void)
{

static GType cell_progress_type = 0;

if (cell_progress_type)
return cell_progress_type;

if (1)
{

static const GTypeInfo cell_progress_info =
{

sizeof (CustomCellRendererProgressClass),
NULL, /* base_init */
NULL, /* base_finalize */
(GClassInitFunc) custom_cell_renderer_progress_class_init,
NULL, /* class_finalize */
NULL, /* class_data */
sizeof (CustomCellRendererProgress),
0, /* n_preallocs */
(GInstanceInitFunc) custom_cell_renderer_progress_init,

};

/* Derive from GtkCellRenderer */
cell_progress_type = g_type_register_static (GTK_TYPE_CELL_RENDERER,

"CustomCellRendererProgress",
&cell_progress_info,
0);

}

return cell_progress_type;
}

/***
*
* custom_cell_renderer_progress_init: set some default properties of the
* parent (GtkCellRenderer).
*
***/

static void
custom_cell_renderer_progress_init (CustomCellRendererProgress *cellrendererprogress)
{

GTK_CELL_RENDERER(cellrendererprogress)->mode = GTK_CELL_RENDERER_MODE_INERT;
GTK_CELL_RENDERER(cellrendererprogress)->xpad = 2;
GTK_CELL_RENDERER(cellrendererprogress)->ypad = 2;

}

79

Chapter 12. Writing Custom Cell Renderers

/***
*
* custom_cell_renderer_progress_class_init:
*
* set up our own get_property and set_property functions, and
* override the parent’s functions that we need to implement.
* And make our new "percentage" property known to the type system.
* If you want cells that can be activated on their own (ie. not
* just the whole row selected) or cells that are editable, you
* will need to override ’activate’ and ’start_editing’ as well.
*
***/

static void
custom_cell_renderer_progress_class_init (CustomCellRendererProgressClass *klass)
{

GtkCellRendererClass *cell_class = GTK_CELL_RENDERER_CLASS(klass);
GObjectClass *object_class = G_OBJECT_CLASS(klass);

parent_class = g_type_class_peek_parent (klass);
object_class->finalize = custom_cell_renderer_progress_finalize;

/* Hook up functions to set and get our
* custom cell renderer properties */

object_class->get_property = custom_cell_renderer_progress_get_property;
object_class->set_property = custom_cell_renderer_progress_set_property;

/* Override the two crucial functions that are the heart
* of a cell renderer in the parent class */

cell_class->get_size = custom_cell_renderer_progress_get_size;
cell_class->render = custom_cell_renderer_progress_render;

/* Install our very own properties */
g_object_class_install_property (object_class,

PROP_PERCENTAGE,
g_param_spec_double ("percentage",

"Percentage",
"The fractional progress to display",
0, 1, 0,
G_PARAM_READWRITE));

}

/***
*
* custom_cell_renderer_progress_finalize: free any resources here
*
***/

static void
custom_cell_renderer_progress_finalize (GObject *object)
{
/*

CustomCellRendererProgress *cellrendererprogress = CUSTOM_CELL_RENDERER_PROGRESS(object);
*/

/* Free any dynamically allocated resources here */

(* G_OBJECT_CLASS (parent_class)->finalize) (object);
}

/***
*
* custom_cell_renderer_progress_get_property: as it says
*
***/

static void

80

Chapter 12. Writing Custom Cell Renderers

custom_cell_renderer_progress_get_property (GObject *object,
guint param_id,
GValue *value,
GParamSpec *psec)

{
CustomCellRendererProgress *cellprogress = CUSTOM_CELL_RENDERER_PROGRESS(object);

switch (param_id)
{

case PROP_PERCENTAGE:
g_value_set_double(value, cellprogress->progress);
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, param_id, psec);
break;

}
}

/***
*
* custom_cell_renderer_progress_set_property: as it says
*
***/

static void
custom_cell_renderer_progress_set_property (GObject *object,

guint param_id,
const GValue *value,
GParamSpec *pspec)

{
CustomCellRendererProgress *cellprogress = CUSTOM_CELL_RENDERER_PROGRESS (object);

switch (param_id)
{

case PROP_PERCENTAGE:
cellprogress->progress = g_value_get_double(value);
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID(object, param_id, pspec);
break;

}
}

/***
*
* custom_cell_renderer_progress_new: return a new cell renderer instance
*
***/

GtkCellRenderer *
custom_cell_renderer_progress_new (void)
{

return g_object_new(CUSTOM_TYPE_CELL_RENDERER_PROGRESS, NULL);
}

/***
*
* custom_cell_renderer_progress_get_size: crucial - calculate the size
* of our cell, taking into account
* padding and alignment properties
* of parent.
*
***/

#define FIXED_WIDTH 100
#define FIXED_HEIGHT 10

81

Chapter 12. Writing Custom Cell Renderers

static void
custom_cell_renderer_progress_get_size (GtkCellRenderer *cell,

GtkWidget *widget,
GdkRectangle *cell_area,
gint *x_offset,
gint *y_offset,
gint *width,
gint *height)

{
gint calc_width;
gint calc_height;

calc_width = (gint) cell->xpad * 2 + FIXED_WIDTH;
calc_height = (gint) cell->ypad * 2 + FIXED_HEIGHT;

if (width)
*width = calc_width;

if (height)
*height = calc_height;

if (cell_area)
{

if (x_offset)
{

*x_offset = cell->xalign * (cell_area->width - calc_width);
*x_offset = MAX (*x_offset, 0);

}

if (y_offset)
{

*y_offset = cell->yalign * (cell_area->height - calc_height);
*y_offset = MAX (*y_offset, 0);

}
}

}99

/***
*
* custom_cell_renderer_progress_render: crucial - do the rendering.
*
***/

static void
custom_cell_renderer_progress_render (GtkCellRenderer *cell,

GdkWindow *window,
GtkWidget *widget,
GdkRectangle *background_area,
GdkRectangle *cell_area,
GdkRectangle *expose_area,
guint flags)

{
CustomCellRendererProgress *cellprogress = CUSTOM_CELL_RENDERER_PROGRESS (cell);
GtkStateType state;
gint width, height;
gint x_offset, y_offset;

custom_cell_renderer_progress_get_size (cell, widget, cell_area,
&x_offset, &y_offset,
&width, &height);

if (GTK_WIDGET_HAS_FOCUS (widget))
state = GTK_STATE_ACTIVE;

else
state = GTK_STATE_NORMAL;

width -= cell->xpad*2;
height -= cell->ypad*2;

gtk_paint_box (widget->style,

82

Chapter 12. Writing Custom Cell Renderers

window,
GTK_STATE_NORMAL, GTK_SHADOW_IN,
NULL, widget, "trough",
cell_area->x + x_offset + cell->xpad,
cell_area->y + y_offset + cell->ypad,
width - 1, height - 1);

gtk_paint_box (widget->style,
window,
state, GTK_SHADOW_OUT,
NULL, widget, "bar",
cell_area->x + x_offset + cell->xpad,
cell_area->y + y_offset + cell->ypad,
width * cellprogress->progress,
height - 1);

}

12.1.3. main.c
And here is a little test that makes use of our new CustomCellRendererProgress :

#include "custom-cell-renderer-progressbar.h"

static GtkListStore *liststore;

static gboolean increasing = TRUE; /* direction of progress bar change */

enum
{

COL_PERCENTAGE = 0,
COL_TEXT,
NUM_COLS

};

#define STEP 0.01

gboolean
increase_progress_timeout (GtkCellRenderer *renderer)
{

GtkTreeIter iter;
gfloat perc = 0.0;
gchar buf[20];

gtk_tree_model_get_iter_first(GTK_TREE_MODEL(liststore), &iter); /* first and only row */

gtk_tree_model_get (GTK_TREE_MODEL(liststore), &iter, COL_PERCENTAGE, &perc, -1);

if (perc > (1.0-STEP) || (perc < STEP && perc > 0.0))
{

increasing = (!increasing);
}

if (increasing)
perc = perc + STEP;

else
perc = perc - STEP;

g_snprintf(buf, sizeof(buf), "%u %%", (guint)(perc*100));

gtk_list_store_set (liststore, &iter, COL_PERCENTAGE, perc, COL_TEXT, buf, -1);

return TRUE; /* Call again */
}

GtkWidget *
create_view_and_model (void)
{

83

Chapter 12. Writing Custom Cell Renderers

GtkTreeViewColumn *col;
GtkCellRenderer *renderer;
GtkTreeIter iter;
GtkWidget *view;

liststore = gtk_list_store_new(NUM_COLS, G_TYPE_FLOAT, G_TYPE_STRING);
gtk_list_store_append(liststore, &iter);
gtk_list_store_set (liststore, &iter, COL_PERCENTAGE, 0.5, -1); /* start at 50% */

view = gtk_tree_view_new_with_model(GTK_TREE_MODEL(liststore));

g_object_unref(liststore); /* destroy store automatically with view */

renderer = gtk_cell_renderer_text_new();
col = gtk_tree_view_column_new();
gtk_tree_view_column_pack_start (col, renderer, TRUE);
gtk_tree_view_column_add_attribute (col, renderer, "text", COL_TEXT);
gtk_tree_view_column_set_title (col, "Progress");
gtk_tree_view_append_column(GTK_TREE_VIEW(view),col);

renderer = custom_cell_renderer_progress_new();
col = gtk_tree_view_column_new();
gtk_tree_view_column_pack_start (col, renderer, TRUE);
gtk_tree_view_column_add_attribute (col, renderer, "percentage", COL_PERCENTAGE);
gtk_tree_view_column_set_title (col, "Progress");
gtk_tree_view_append_column(GTK_TREE_VIEW(view),col);

g_timeout_add(50, (GSourceFunc) increase_progress_timeout, NULL);

return view;
}

int
main (int argc, char **argv)
{

GtkWidget *window, *view;

gtk_init(&argc,&argv);

window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_window_set_default_size (GTK_WINDOW(window), 150, 100);
g_signal_connect(window, "delete_event", gtk_main_quit, NULL);

view = create_view_and_model();

gtk_container_add(GTK_CONTAINER(window), view);

gtk_widget_show_all(window);

gtk_main();

return 0;
}

12.2. Cell Renderers Others Have Written
Just in case you are one of those people who do not like to re-invent the wheel, here is a list of custom cell renderers
other people have written:

• Progress bar cell renderer (gaim)

• Date cell renderer (mrproject) (is this one easy to re-use?)

• List/combo cell renderer (mrproject) (is this one easy to re-use?)

• Pop-up cell renderer (mrproject) (what does this do?)

84

Chapter 12. Writing Custom Cell Renderers

• Your custom cell renderer here?!

85

Chapter 13. Other Resources

A short tutorial like this cannot possibly cover everything. Luckily, there is a lot more information out there. Here
is a list of links that you might find useful (if you have any links that should appear here as well, please send them
to tim at centricular dot net).

• Gtk+ API Reference Manual

• Gdk API Reference Manual

• Pango API Reference Manual

• GLib API Reference Manual

• gtk-app-devel mailing list archives - search them!

• gtk-demo - part of the Gtk+ source code (look in gtk+-2.x.y/demos/gtk-demo), especially list_store.c,
tree_store.c, and stock_browser.c

• TreeView tutorial using Gtk’s C++ interface (gtkmm)

• TreeView tutorial using Gtk’s python interface

• Some slides from Owen Taylor’s GUADEC 2003 tutorial (postscript, pdf, see pages 13-15)

• Existing applications - yes, they exist, and you can look at their source code. SourceForge’s WebCVS browse
feature is quite useful, and the same goes for GNOME as well.

• If your intention is to display external data (from a database, or in XML form) as a list or tree or table, you might
also be interested GnomeDB, especially libgda and libgnomedb (e.g. the GnomeDBGrid widget). See also this
PDF presentation (page 24ff).

• your link here!

86

Chapter 14. Copyright, License, Credits, and Revision History

14.1. Copyright and License
Copyright (c) 2003-2004 Tim-Philipp Müller <tim at centricular dot net >

This tutorial may be redistributed and modified freely in any form, as long as all authors are given due credit for
their work and all non-trivial changes by third parties are clearly marked as such either within the document (e.g.
in a revision history), or at an external and publicly accessible place that is refered to in the document (e.g. a CVS
repository).

14.2. Credits
Thanks to Axel C. for proof-reading the first drafts, for many suggestions, and for introducing me to the tree view
widget in the first place (back then when I was still convinced that porting to Gtk+-2.x was unnecessary, Gtk+-1.2
applications looked nice, and Aristotle had already said everything about politics that needs to be said).

Harring Figueiredo shed some light on how GtkListStore and GtkTreeStore deal with pixbufs.

Ken Rastatter suggested some additional topics (with complete references even).

Both Andrej Prsa and Alan B. Canon sent me a couple of suggestions, and ’taf2’, Massimo Mangoni and others
spotted some typos.

Many thanks to all of them, and of course also to kris and everyone else in #gtk+.

14.3. Revision History

5th June 2005

• Remove unnecessary col = gtk_tree_view_column_new() im hello world code (leftover from migration to con-
venience functions).

3rd February 2005

• Point out that GObjects such as GdkPixbufs retrieved with gtk_tree_model_get() need to be g_object_unref()’ed
after use, as gtk_tree_model_get() adds a reference.

• Added explicit (gint) event->x double to int conversion to code snippet using gtk_tree_view_get_path_at_pos()
to avoid compiler warnings.

9th September 2004

• Fixed another mistake in tree path explanation: text did not correspond picture (s/movie clips/movie trailers/);
(thanks to Benjamin Brandt for spotting it).

6th August 2004

• Fixed mistake in tree path explanation (s/4th/5th/) (thanks to both Andrew Kirillov and Benjamin Brandt for
spotting it).

30th April 2004

• Added Hello World

31st March 2004

• Fixed fatal typo in custom list code: g_assert() in custom_list_init() should be ==, not != (spotted by mmc).

• Added link to Owen Taylor’s mail on the GtkTreeView Drag’n’Drop API.

24th January 2004

• Fixed typo in code example (remove n-th row example) (Thanks to roel for spotting it).

• Changed ’Context menus’ section title

19th January 2004

87

Chapter 14. Copyright, License, Credits, and Revision History

• Expanded section on GtkTreeRowReferences, and on removing multiple rows.

8th January 2004

• Added tiny section on Glade and treeviews

• Added more detail to the section describing GtkTreePath, GtkTreeIter et.al.

• Reformatted document structure: instead of one single chapter with lots of sections, have multiple chapters (this
tutorial is way to big to become part of the Gtk+ tutorial anyway); enumerate chapters and sections.

• Expanded the section on tree view columns and cell renderers, with help of two diagrams by Owen Taylor (from
the GUADEC 2003 Gtk+ tutorial slides).

10th December 2003

• Added more information about how to remove a single row, or more specifically, the n-th row of a list store

• Added a short example about how to pack icons into the tree view.

28th October 2003

• Editable cells will work fine even if selection is set to GTK_SELECTION_NONE. Removed sentences that say
otherwise.

23rd October 2003

• fix ’jumpy’ selections in custom model GtkTreeSortable interface implementation.
gtk_tree_model_rows_reordered() does not seem to work like the API reference implies (see bug #124790)

• added section about how to get the cell renderer a button click happened on

• added section about editable cells with spin buttons (and a CellRendererSpin implementation to the examples)

10th October 2003

• make custom model GtkTreeSortable implementation emit "sort-column-changed" signal when sortid is
changed

• fixed code typo in selection function section; added a paragraph about rule hint to ’make whole row coloured
or bold’ section

7th October 2003

• Reformatted source code to make it fit on pages when generating ps/pdf output

• Added link to PDF and docbook XML versions.

88

