The Glib Object system v0.10.0

Mathieu Lacage <mat hi eu@none. or g>

The Glib Object system v0.10.0
by Mathieu Lacage
Copyright © 2002, 2003, 2004 Mathieu Lacage

Thisarticleis copyrighted to Mathieu Lacage. Although copying and/or reuse of this document is allowed per the license described below, it
would be considered friendly to link to this document rather than make a copy of it and to notify me in case you want to republish this work
in paper.

This work may be reproduced and distributed in whole or in part, in any medium, physical or electronic, so as long as this copyright notice
remains intact and unchanged on all copies. Commercial redistribution is permitted and encouraged, but you may not redistribute, in whole
or in part, under terms more restrictive than those under which you received it. If you redistribute a modified or translated version of this
work, you must also make the source code to the modified or translated version available in electronic form without charge. However, mere
aggregation as part of alarger work shall not count as a modification for this purpose.

All code examplesin thiswork are placed into the public domain, and may be used, modified and redistributed without restriction.

BECAUSE THISWORK IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE WORK, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE WORK "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. SHOULD THE WORK PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY REPAIR OR COR-
RECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE WORK AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE WORK, EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

If you want to help on this document, feel free to send me a patch to the origina xml which is avalable on
http://www.gnome.org/~mathieu/.

While | am always happy to answer questions about this document, | am not always the best person these questions should be asked to. In
doubt, always mail gtk-devel-list@gnome.org. Y ou can register to this mailing list on http://mail.gnome.org.

I'd like to thank Owen Taylor, Tim Janik and especially James Henstridge for their help on IRC, when | was trying to figure out the why of
some of GObject aspects.

Table of Contents

I 111 lo [Uoi1To o TSRS 1
Data types and ProgramMingcee..eeeeneeeeeeeiee e eea e eeeeet e eea e e e st e eaneeataeeraereaaenes 1
EXPOIING 8 C APl ..o 1

2. The Glib DYNamicC TYPE SYSIEMuuueiiiiii ettt e et e e e et eeeraa s 4
COPY TUNCLIONS ...ttt ettt ettt e e et e ettt e ettt e e e e e e e e e naa s 5
1600 011/= ¢ 1110 0 ST PSP PT PP PPPPTT 6
Non-Instantiable non-classed fundamental typescoovviiiiii i 7
Instantiable classed typeS: OBJECEScvuiii e 8
Non-instantiable classed types: INtErfaces.oovveiviiiiiii e 11

Interface INItIAliZBHIONovee e e e e e e e e ees 13
INterfaCe DESIFUCLIONo.uiiie e et e e e e e et e eean e aees 14

S o 0= ST TPT 17

L0101 = ST PPTTTTR 17
O O [0S T 1= PP 17
NoN-C closures (for the fEarEss).o.uue i 18

SIONAIS ettt 18
SIgNaAl FEGISIIAIION ...t 19
SIQN@l COMNECLION ...t e e et e e e e e e e eaneas 19
S o 7= = 14T Lo o I 20
Thedetall argUMENLo.uiiii e e e e e e e e e e eaaaeee 21

4. GObject: what brings everything together.oouiiiiiii e 23
OBJECE INSLANCIALTIONeeiei ettt e e et e et e e e e 23
ObjECt MEMOIY MANAJEIMIENT ... eieeti ettt ettt et e et e et e e e e et e e e e ab e e e rba s 26

REFEIENCE COUNL ...ttt 27
WEBK REFEIEINCES ...oeeviiiiiie et e e e s 28
Reference CountS and CYCIES .. .ovvu i e 28

(@] o] o o 0] 1= 1 11 =TSP 29
Accessing multiple propertieS @l ONCEceeeuuieiiiii e e 31

B H W T 0 2 e et e e e aaas 32
How To define and implement anew GODJECE 2c.uniiiiiiiiei e 32

Boilerplate header COOEuuiiiiii e 32
[T0TH =01 £ oo o L= 35
OBJECE CONSIIUCLION ...ttt et e e e e e e e 35
OBJECE DESIIUCTION ... ettt et et e et e et e e e e e 37
OBJECE MELNOTSee et 38
L0107 1011 0T 0 o TP 40

How To define and implement INLErfaCeS ?oovviiiii i e 41
HOW TO defiNe INtEIfACES ? ...ovvveriiis e 41
How To define and implement an implementation of an Interface?cccooevevevinennnn. 43
Interface definition PrereqUISITEScooeue i 44
INEEITACE PrOPEITIES . ..vei ittt e e et e e et e e e et e eeees 46

HOWLO Create @nd USE SIGNEIS ... c.uniieieii ettt e e e e et eeaaaees 48
SIMPlEUSE Of SIGNAIS . covniiiic e 48
How to provide more flexibility tO USErS?ovvviiiii e, 49
How users can abuse signals (and why some think it iSsgood)ccccoovveiiiiiiiiinneiennnn. 52

6. GODJECE el @B TOOIS ... ettt e e e e e e e na e 54
Debugging reference count ProblEMScoouuiiiiii e 54
WIIING AP OCS ...ttt et e e et e et e et e e e e ean s 54

7. GODJECt VEIrSION ChaNQESvuuiiiiciiiiei e e e e e e e e e e e et e e et e e aan s 55
GLID 2.2 X FEIEBSES ...ttt ettt 55
LI I Q= 1= S-S 55
LI I O Q= 1= S =S PRI 55

8. GODJECE PEITOMIBNCE ... ettt e et e et e e e e e ab e 56

List of Figures

O PP 2

List of Tables

2.1. GType Instantiation/FiNaliZATONiiiiiiieii e 10
2.2.Interface INITIAliZBHONc.uiiee e e 14
2.3 INterfaCe FINAIZALIONcoeeiiieiei e 14
g o o = A 1= RPN 25
o o) o 1= v U 0= S PSP 27

Vi

Chapter 1. Introduction

GObject, and its lower-level type system, GType, are used by GTK+ and most Gnome libraries to provide:

» object-oriented C-based APIs and

e automatic transparent APl bindings to other compiled or interpreted languages.

A lot of programmers are used to work with compiled-only or dynamically interpreted-only languages and do
not understand the challenges associated with cross-language interoperability. This introduction tries to provide
an insight into these challenges. describes briefly the solution choosen by GLib.

The following chapters go into greater detail into how GType and GObject work and how you can use them asa
C programmer. | personally find it useful to keep in mind that allowing access to C objects from other inter-
preted languages was one of the major design goals: this can often explain the sometimes rather convoluted
APIs and features present in this library.

Data types and programming

One could say (I have seen such definitions used in some textbooks on programming language theory) that a
programming language is merely a way to create data types and manipulate them. Most languages provide a
number of language-native types and a few primitives to create more complex types based on these primitive

types.

In C, the language provides types such as char, long, pointer. During compilation of C code, the compiler maps
these language types to the compiler's target architecture machine types. If you are using a C interpreter (I have
never seen one myself but it is possible :), the interpreter (the program which interprets the source code and ex-
ecutes it) maps the language types to the machine types of the target machine at runtime, during the program ex-
ecution (or just before execution if it uses a Just In Time compiler engine).

Perl and Python which are interpreted languages do not really provide type definitions similar to those used by
C. Perl and Python programmers manipulate variables and the type of the variables is decided only upon the
first assignment or upon the first use which forces a type on the variable. The interpreter also often provides a
lot of automatic conversions from one type to the other. For example, in Perl, a variable which holds an integer
can be automatically converted to a string given the required context:

ny $tnp = 10;
print "this is an integer converted to a string:" . $tnmp . "\n";

Of coursg, it is also often possible to explicitely specify conversions when the default conversions provided by
the language are not intuitive.

Exporting a C API

C APIs are defined by a set of functions and global variables which are usually exported from a binary. C func-
tions have an arbitrary number of arguments and one return value. Each function is thus uniquely identified by
the function name and the set of C types which describe the function arguments and return value. The global
variables exported by the API are similarly identified by their name and their type.

A C APl is thus merely defined by a set of names to which a set of types are associated. If you know the func-
tion calling convention and the mapping of the C types to the machine types used by the platform you are on,
you can resolve the name of each function to find where the code associated to this function is located in
memory, and then construct a valid argument list for the function. Finally, all you have to do is triger a call to
the target C function with the argument list.

For the sake of discussion, here is a sample C function and the associated 32 bit x86 assembly code generated
by gcc on my linux box:

Introduction

static void function foo (int foo)

{}

int main (int argc, char *argv[])

function_foo (10);

return O;
}
push $0xa
cal 0x80482f 4 <function_foo>

The assembly code shown above is pretty straightforward: the first instruction pushes the hexadecimal value Oxa
(decimal value 10) as a 32 hit integer on the stack and callsf unct i on_f 0o. Asyou can see, C function calls
are implemented by gcc by native function calls (thisis probably the fastest implementation possible).

Now, let's say we want to call the C function f unct i on_f oo from a python program. To do this, the python
interpreter needs to:

e Find where the function is located. This means probably find the binary generated by the C compiler which
exports this functions.

» Load the code of the function in executable memory.
e Convert the python parameters to C-compatible parameters before calling the function.
» Call the function with the right calling convention

e Convert the return values of the C function to python-compatible variables to return them to the python
code.

The process described above is pretty complex and there are a lot of ways to make it entirely automatic and
transparent to the C and the Python programmers:

» Thefirst solution is to write by hand a lot of glue code, once for each function exported or imported, which
does the python to C parameter conversion and the C to python return value conversion. This glue code is
then linked with the interpreter which alows python programsto call a python functions which delegates the
work to the C function.

« Another nicer solution is to automatically generate the glue code, once for each function exported or impor-
ted, with a special compiler which reads the original function signature.

» The solution used by GLib isto use the GType library which holds at runtime a description of all the objects
manipulated by the programmer. This so-called dynamic typel library is then used by special generic glue
code to automatically convert function parameters and function calling conventions between different
runtime domains.

The greatest advantage of the solution implemented by GType is that the glue code sitting at the runtime domain
boundaries is written once: the figure below states this more clearly.

Figurel.1.

Currently, there exist at least Python and Perl generic glue code which makes it possible to use C objects written

Thercat {r/f T fe'rQrﬂ%%PO”en atilcar%lﬁfwlrt]h & miniom Amount o Works there 510, NeRE1.J608 s, uge
ﬁ‘é‘?f?é‘@g% @)% gﬁ?%ﬂli f %téﬁw%@anﬁ ated object at runtime. It can be implemented by a process-specific
database: every new object created registers the characteristics of its associated type in the type system. It can aso be implemented by intro-
AithioughettzabgDak wasanguiahlhedeeriail e)ctsoftmsui thinessaghaanmejopl émkuangee enhthensy ol el GTygoetGi) dot

object metadata at runtime.

Introduction

library. C programmers are likely to be puzzled at the complexity of the features exposed in the following
chapters if they forget that the GType/GObject library was not only designed to offer OO-like features to C pro-
grammers but also transparent cross-langage interoperability.

Chapter 2. The Glib Dynamic Type System

A type, as manipulated by the Glib type system, is much more generic than what is usually understood as an Ob-
ject type. It is best explained by looking at the structure and the functions used to register new types in the type
system.

typedef struct _Glypelnfo GTypel nf o;
struct _Glypelnfo
{

/* interface types, classed types, instantiated types */

gui nt 16 cl ass_si ze;
GBasel ni t Func base init;
GBaseFi nal i zeFunc base finalize;
/* classed types, instantiated types */
&Cl assl nit Func class_init;

CCl assFi nal i zeFunc class finalize;
gconst poi nt er cl ass_dat a;

/* instantiated types */

gui nt 16 i nstance_si ze;
gui nt 16 n_preall ocs;

G nst ancel ni t Func instance_init;

/* val ue handling */
const GIypeVal ueTabl e *val ue_t abl e;

1
Glype g_type_register_static (Glype par ent _type,
const gchar *type_nane,
const Glypelnfo *info,
GlypeFl ags flags);
Glype g_type_register_fundamental (GType type_id,
const gchar *type_nane,
const Glypel nfo *inf o,
const GIypeFundanental Info *finfo,
GlypeFl ags flags);

g_type register_static and g_type_register_fundanmental arethe C functions, defined in
gt ype. h and implemented in gt ype. ¢ which you should use to register a new type in the program's type
system. It is not likely you will ever need to use g_t ype_r egi st er _f undanent al (you have to be Tim
Janik to do that) but in case you want to, the last chapter explains how to create new fundamental types. 2

Fundamental types are top-level types which do not derive from any other type while other non-fundamental
types derive from other types. Upon initialization by g_t ype_i ni t, the type system not only initiaizesitsin-
ternal data structures but it also registers a number of core types. some of these are fundamental types. Others
are types derived from these fundamental types.

Fundamental and non-Fundamental types are defined by:

» classsize: theclass sizefieldin GTypelnfo.
» classinitialization functions (C++ constructor): the base init and class init fieldsin GTypelnfo.

» classdestruction functions (C++ destructor): the base finalize and class finalize fieldsin GTypelnfo.

2 Please, note that there exist another registration function: the g_t ype_r egi st er _dynam c. We will not discuss this function here
sinceitsuseisvery similar tothe_st at i ¢ version.

The Glib Dynamic Type System

instance size (C++ parameter to new): theinstance_size field in GTypelnfo.
instanciation policy (C++ type of new operator): the n_preallocs field in GTypelnfo.
copy functions (C++ copy operators): the value table field in GTypelnfo.

XXX: GTypeFlags.

Fundamental types are also defined by a set of GTypeFundamental Flags which are stored in a GTypeFunda-
mentalInfo. Non-Fundamental types are furthermore defined by the type of their parent which is passed as the
parent_type parametertog type_regi ster_staticandg_type_register_dynani c.

Copy functions

The magjor common point between all glib types (fundamental and non-fundamental, classed and non-classed,
instantiable and non-instantiable) is that they can all be manipulated through a single API to copy/assign them.

The GVaue structure is used as an abstract container for all of these types. Its simplistic APl (defined in gob-
j ect/ gval ue. h) can be used to invoke the value_table functions registered during type registration: for ex-
ampleg_val ue_copy copiesthe content of a GVaue to another GVaue. Thisis similar to a C++ assignment
which invokes the C++ copy operator to modify the default bit-by-bit copy semantics of C++/C structures/
classes.

The following code shows shows you can copy around a 64 bit integer, as well as a GObject instance pointer
(sample code for thisislocated in the source tarball for this document in sanpl e/ gt ype/ t est . ¢):

static void test_int (void)

{

}

Gval ue a_value = {0, };
Gval ue b_value = {0, };
guint64 a, b;

a = Oxdeadbeaf;

g_value_init (& value, G TYPE Ul NT64);
g_val ue_set _uint64 (& _value, a);

g_value_init (& _value, G TYPE U NT64);
g_val ue_copy (&a val ue, &b _val ue);

b = g_val ue_get _ui nt64 (&b_val ue);

if (a==Dhb) {

g print ("Yay !'! 10 lines of code to copy around a uint64.\n");
} else {

g print ("Are you sure this is not a Z80 ?\n");

static void test_object (void)

{

Gbj ect *obj ;

Gval ue obj vala = {0, };

Gval ue obj valb = {0, };

obj = g_object_new (MAMAN BAR TYPE, NULL);

g _value_ init (&bj vala, MAMAN BAR TYPE);
g_val ue_set _object (&obj _vala, obj);

g_value_init (&bj_valb, G TYPE OBJECT);

/* g _value_copy's semantics for G TYPE OBJECT types is to copy the reference.
This function thus calls g_object_ref.
It is interesting to note that the assignnent works here because
MAMAN BAR TYPE is a G TYPE OBJECT.

5

The Glib Dynamic Type System

*/
g_val ue_copy (&obj vala, &obj _valb);

g_obj ect _unref (G OBJECT (obj));
g_obj ect _unref (G OBJECT (obj));
}

The important point about the above code is that the exact semantic of the copy calls is undefined since they de-
pend on the implementation of the copy function. Certain copy functions might decide to allocate a new chunk
of memory and then to copy the data from the source to the destination. Others might want to simply increment
the reference count of the instance and copy the reference to the new GValue.

The value_table used to specify these assignment functions is defined in gt ype. h and is thoroughly described
in the APl documentation provided with GObject (for once ;-) which is why we will not detail its exact se-

mantics.

typedef struct _GIypeVal ueTabl e GlypeVal ueTabl e;

struct _GIypeVal ueTabl e

{
voi d (*value_init) (Gval ue *val ue);
voi d (*val ue_free) (Gval ue *val ue) ;
voi d (*val ue_copy) (const Gval ue *src_val ue,

Gval ue *dest val ue);
/* varargs functionality (optional) */
gpoi nter (*val ue_peek pointer) (const Gval ue *val ue);

gchar *col |l ect _format;

gchar* (*col | ect _val ue) (Gval ue *val ue,
gui nt n_col | ect _val ues,
GlypeCval ue *coll ect _val ues,
gui nt coll ect _flags);

gchar *| copy_fornmat;

gchar* (*l copy_val ue) (const Gval ue *val ue
gui nt n_col | ect _val ues,
GlypeCval ue *col |l ect val ues,
gui nt collect _flags);

}s

Interestingly, it is also very unlikely you will ever need to specify avalue_table during type registration because
these value_tables are inherited from the parent types for non-fundamental types which means that unless you
want to write a fundamental type (not a great idea!), you will not need to provide a new value_table since you
will inherit the value_table structure from your parent type.

Conventions

There are anumber of conventions users are expected to follow when creating new types which are to be expor-
ted in a header file:

» Usethe obj ect _net hod pattern for function names:. to invoke the method named foo on an instance of
object type bar, cal bar _f oo.

» Use prefixing to avoid namespace conflicts with other projects. If your library (or application) is named Ma-
man, prefix al your function names with maman_. For example: manman_obj ect _net hod.

» Create a macro named PREFI X_OBJECT_TYPE which always returns the Gtype for the associated object
type. For an object of type Bar in alibray prefixed by maman, use: MAMAN_BAR_TYPE. It is common al-
though not a convention to implement this macro using either a global static variable or a function named
prefix_object get type. Wewill follow the function pattern wherever possiblein this document.

* Create amacro named PREFI X_OBJECT (obj) which returns a pointer of type PrefixObject. This macro
is used to enforce static type safety by doing explicit casts wherever needed. It also enforces dynamic type
safety by doing runtime checks. It is possible to disable the dynamic type checks in production builds (see
http://devel oper.gnome.org/doc/API/2.0/glib/glib-building.html). For example, we would create MA-

6

The Glib Dynamic Type System

MAN BAR (obj) to keep the previous example.

» If thetypeis classed, create a macro named PREFI X OBJECT CLASS (kl ass) . This macro is strictly
equivalent to the previous casting macro: it does static casting with dynamic type checking of class struc-
tures. It is expected to return a pointer to a class structure of type PrefixObjectClass. Again, an example is:
MAMAN_BAR_CLASS.

» Create amacro named PREFI X | S BAR (obj) : thismacro is expected to return a gboolean which indic-
ates whether or not the input object instance pointer of type BAR.

« |If the type is classed, create a macro named PREFI X | S OBJECT_CLASS (kl ass) which, as above,
returns a boolean if the input class pointer is a pointer to a class of type OBJECT.

» If the type is classed, create a macro named PREFI X _OBJECT_GET_CLASS (obj) which returns the
class pointer associated to an instance of a given type. This macro is used for static and dynamic type safety
purposes (just like the previous casting macros).

The implementation of these macrosis pretty straightforward: a number of simple-to-use macros are provided in
gt ype. h. For the example we used above, we would write the following trivial code to declare the macros:

#def i ne MAMAN BAR TYPE (maman_bar _get _type ())

#defi ne MAMAN BAR(obj) (G_TYPE_CHECK_| NSTANCE_CAST
#define MAMAN_BAR_CLASS(kI ass) (G_TYPE_CHECK_CLASS CAST ((
#defi ne MAMAN_| S BAR(obj) (G_TYPE_CHECK | NSTANCE_TYPE ((0bj
#define MAMAN | S BAR CLASS(kl ass) (G _TYPE_CHECK CLASS TYPE (
#defi ne MAMAN_BAR GET_CLASS(obj) (G_TYPE_I NSTANCE GET_CLASS

(obj), MAMAN BAR TYPE, Ma
kl ass), MAVAN BAR TYPE, Mam
i), MAMAN BAR TYPE))

(|(s), MAMVAN BAR TYPE))

(
|
i as
((obj), MAVAN BAR TYPE, M

Note

Stick to the naming k|l ass ascl ass isaregistered c++ keyword.

The following code shows how to implement the maman_bar _get _t ype function:

Glype maman_bar _get type (void)
{

static GType type = 0;
if (type == 0)
static const GIypelnfo info = {
} /* You fill this structure. */
type = g_type_register_static (G _TYPE_OBJECT,
" MamanBar Type",
& nfo, 0);

return type;

Non-Instantiable non-classed fundamental types

A lot of types are not instantiable by the type system and do not have a class. Most of these types are funda-
mental trivial types such as gchar, registereding_val ue_types_init (ingval uet ypes. c).

To register such a type in the type system, you just need to fill the GTypelnfo structure with zeros since these
types are also most of the time fundamental:

GTypeI nfo info = {
/* class_size */

NULL /* base_init */
NULL, /* base_destroy */
NULL, /* class_init */
NULL, /* class_destroy */

7

The Glib Dynamic Type System

NULL, /* class_data */
0, /* instance_size */
0, /* n_preallocs */
NULL, /* instance_ init */
NULL, /* value_table */

static const GIypeVal ueTabl e value_table = {
val ue_init_I ongO, /* value_init */
NULL, /* value_free */
val ue_copy_I ongO, /* val ue_copy */
NULL, /* val ue_peek_pointer */

i, /* collect format */
val ue_collect _int, /* collect_value */

"p", /* lcopy format */

val ue_I| copy_char, /* I copy_val ue */

i nfo. val ue_table = &val ue_tabl e;
type = g_type_register_fundamental (G TYPE CHAR, "gchar", & nfo, &finfo, 0);

Having non-instantiable types might seem a bit useless: what good is atype if you cannot instanciate an instance
of that type ? Most of these types are used in conjunction with GValues. a GValue is initialized with an integer
or astring and it is passed around by using the registered type's value table. GValues (and by extension these
trivial fundamental types) are most useful when used in conjunction with object properties and signals.

Instantiable classed types: objects

Types which are registered with a class and are declared instantiable are what most closely resembles an object.
Although GObjects (detailed in Chapter 4, GObject: what brings everything together.) are the most well known
type of instantiable classed types, other kinds of similar objects used as the base of an inheritance hierarchy
have been externally developped and they are all built on the fundamental features described below.

For example, the code below shows how you could register such afundamental object type in the type system:

typedef struct {
Gbj ect parent;
/* instance nenbers */
int field a;

} MamanBar ;

struct _MamanBar C ass {
Gbj ect Cl ass parent;
/* class nenbers */
void (*do_action_public_virtual) (MamanBar *self, guint8 i);

void (*do_action_public_pure_virtual) (MamanBar *self, guint8 i);
1
#def i ne MAMAN_BAR TYPE (nmaman_bar _get _type ())

Glype
manan_bar _get type (void)

static GIype type = 0;
if (type == 0)
static const GIypelnfo info = {
si zeof (MamanBar d ass),

NULL, /* base_init */
NULL, /* base finalize */
(C&d asslnitFunc) foo_class_init,
NULL, /* class finalize */
NULL, /* class_data */

si zeof (MamanBar),
, /* n_preallocs */
(G nstancel nitFunc) NULL /* instance_init */

8

The Glib Dynamic Type System

1

type = g_type register_fundanental (G TYPE OBJECT,
"Bar Type",
& nfo, 0);

return type;

}

Upon the first call to maman_bar _get _t ype, the type named Bar Type will be registered in the type system
asinheriting from the type G_TYPE_OBJECT.

Every object must define two structures: its class structure and its instance structure. All class structures must
contain as first member a GTypeClass structure. All instance structures must contain as first member a
GTypel nstance structure. The declaration of these C types, coming from gt ype. h is shown below:

struct _GIyped ass
{
Glype g_type;

struct _GTlypel nst ance

Glyped ass *g_cl ass;

These constraints allow the type system to make sure that every object instance (identified by a pointer to the
object's instance structure) contains in its first bytes a pointer to the object's class structure.

Thisrelationship is best explained by an example: let's take object B which inherits from object A:

/* A definitions */
typedef struct {
Glypel nst ance parent;
int field a;
int field_b;
PA
typedef struct {
Glyped ass parent_cl ass;
void (*method_a) (void);
void (*met hod_b) (void);
} Ad ass;

/* B definitions. */
typedef struct {
A parent;
int field c;
int field_d;
B;
typedef struct {
ACl ass parent _cl ass;
void (*method_c) (void);
void (*method_d) (void);
} Bd ass;

The C standard mandates that the first field of a C structure is stored starting in the first byte of the buffer used
to hold the structure's fields in memory. This means that the first field of an instance of an object B is A's first
field which in turn is GTypel nstance's first field which in turn is g_class, a pointer to B's class structure.

Thanks to these ssmple conditions, it is possible to detect the type of every object instance by doing:
B *Db;
b- >parent . parent. g_cl ass->g_type

or, more quickly:

The Glib Dynamic Type System

B *b;
((GTypel nst ance*)b)->g cl ass->g_type

Instanciation of these types can be donewithg _t ype_create_i nst ance:

Glypel nstance* g type _create_instance (Glype type);
voi d g_type free_instance (GTypel nst ance *instance);

g_type create_instance will lookup the type information structure associated to the type requested.
Then, the instance size and instanciation policy (if the n_preallocs field is set to a non-zero value, the type sys-
tem allocates the object's instance structures in chunks rather than mallocing for every instance) declared by the
user are used to get a buffer to hold the object's instance structure.

If thisisthe first instance of the object ever created, the type system must create a class structure: it alocates a
buffer to hold the object's class structure and initializes it. It first copies the parent's class structure over this
structure (if there is no parent, it initializes it to zero). It then invokes the base class initiaization functions
(GBaselnitFunc) from topmost fundamental object to bottom-most most derived object. The object's class init
(GClasslnitFunc) function is invoked afterwards to complete initialization of the class structure. Finally, the ob-
ject'sinterfaces areinitialized (we will discuss interface initialization in more detail later). 3

Once the type system has a pointer to an initialized class structure, it sets the object's instance class pointer to
the object's class structure and invokes the object's instance init (Glnstancel nitFunc)functions, from top-most
fundamental type to bottom-most most derived type.

Object instance destruction through g_t ype_free_i nstance is very simple: the instance structure is re-
turned to the instance pool if there is one and if this was the last living instance of the object, the class is des-
troyed.

Class destruction 4 (the concept of destruction is sometimes partly refered to as finalization in Gtype) is the
symmetric process of the initialization: interfaces are destroyed first. Then, the most derived class finalize
(ClassFinalizeFunc) function is invoked. The base class finalize (GBaseFinalizeFunc) functions are Finaly in-
voked from bottom-most most-derived type to top-most fundamental type and the class structureis freed.

As many readers have now understood it, the base initialization/finalization process is very similar to the C++
Constructor/Destructor paradigm. The practical details are quite different though and it is important not to get
confused by the superficial similarities. Typically, what most users have grown to know as a C++ constructor
(that is, alist of object methods invoked on the object instance once for each type of the inheritance hierachy)
does not exist in GType and must be built on top of the facilities offered by GType. Similarly, GTypes have no
instance destruction mechanism. It is the user's responsibility to implement correct destruction semantics on top
of the existing GType code. (thisiswhat GObject does. See Chapter 4, GObject: what brings everything togeth-
er.)

For example, if the object B which derives from A isinstantiated, GType will only invoke the instance_init call-
back of object B while a C++ runtime will invoke the constructor of the object type A first and then of the object
type B. Furthermore, the C++ code equivalent to the base init and class init callbacks of GType is usually not
needed because C++ cannot really create object types at runtime.

The instanciation/finalization process can be summarized as follows:

Table 2.1. GType I nstantiation/Finalization

Invoca- |Function |Function's parameters
tion time |Invoked

First call |type's On the inheritance tree of classes from fundamental type to target type. base initisin-
to base init |voked once for each class structure.

g_type |function
_Creat

3 The classinitialization processis entirely implemented int ype_cl ass_i ni t _Wningt ype. c.
4ltisimplementedint ype_data_final i ze_cl ass_U(ingtype. c.

10

The Glib Dynamic Type System

Invoca- |Function |Function's parameters
tion time |Invoked
e_inst
ance for
target
type
First call |target On target type's class structure
to type's
g_type |class init
_creat |function
e_inst
ance for
target
type
First call |interface
to initializa-
g_type |tion, see
_creat |thesec-
e_inst |tion
ance for |caled
target “Interface
type Initiaiza-
tion”
Each call |target On abject's instance
to type'sin-
g_type |[stance ini
_creat |tfunction
e_inst
ance for
target
type
Last cal |interface
to destruc-
g_type |tion, see
free |thesec-
i n- tion
stance |cdled
for target |“Interface
type Destruc-
tion”
Last call |target On target type's class structure
to type's
g_type |class fina
free |lizefunc-
i n- tion
stance
for target
type
Last call |type's On the inheritance tree of classes from fundamental type to target type. base initisin-
to base fina |voked once for each class structure.
g_type |lizefunc-
free [tion
i n-
stance
for target
type

Non-instantiable classed types: Interfaces.

11

The Glib Dynamic Type System

GType's Interfaces are very similar to Javas interfaces. To declare one of these you have to register a non-
instantiable classed type which derives from GTypelnterface. The following piece of code declares such an in-

terface.

#defi ne MAMAN_| BAZ_TYPE

#def i ne MAMAN | BAZ(obj)

#def i ne MAMAN | BAZ CLASS(vt abl e)
#defi ne MAMAN | S | BAZ(obj)

#define MAMAN_| S | BAZ CLASS(vt abl e)
#defi ne MAMAN_ | BAZ GET_CLASS(i nst)

manman_i baz_get _type ())

G_TYPE_CHECK | NSTANCE_CAST ((obj),
G_TYPE_CHECK_CLASS _CAST ((vtable),
G_TYPE_CHECK_| NSTANCE_TYPE ((obj),
G _TYPE_CHECK CLASS TYPE ((vtable),

e T e VN

typedef struct _Mamanl baz Mamanl baz; /* dumry object */
typedef struct _Mamanl bazCl ass Mamanl bazd ass;

struct _Mamanl bazC ass {

Glypel nterface parent;

void (*do_action) (Manmanlbaz *self);

Glype maman_i baz_get _type (void);
voi d maman_i baz_do_acti on (Mananl baz *sel f);

The interface function, maman_i baz_do_act i on isimplemented in a pretty simple way:

voi d maman_i baz_do_acti on (Mananl baz *sel f)

MAMAN | BAZ GET_CLASS (sel f)->do_action (self);

MAMAN | BAZ_TYPE
MAMAN_| BAZ_TYPE
MAMAN_| BAZ_TYPE
MAMAN | BAZ_TYPE

G_TYPE_I NSTANCE_GET_| NTERFACE ((inst), NMAVAN TBAZ

manman_i baz_get _gt ype registers a type named Mamanl Baz which inherits from G_TY PE_INTERFACE.

All interfaces must be children of G_TYPE_INTERFACE in the inheritance tree.

An interface is defined by only one structure which must contain as first member a GTypel nterface structure.
The interface structure is expected to contain the function pointers of the interface methods. It is good style to
define helper functions for each of the interface methods which simply call the interface’ method directly: ma-

man_i baz_do_acti onisoneof these.

Once an interface type is registered, you must register implementations for these interfaces. The function named
manman_baz_get _t ype registers a new GType named MamanBaz which inherits from GObject and which

implements the interface Mamanl Baz.

static void manan_baz_do_acti on (Mananl baz *sel f)

g_print ("Baz inplenentation of IBaz interface Action.\n");

static void
baz interface_init (gpointer g_i face,
gpoi nt er i face_dat a)

Mamanl bazCd ass *kl ass = (Mamanl bazCl ass *)g_iface;
kl ass->do_action = manman_baz_do_acti on;

Glype
manan_baz_get type (void)

static Glype type = 0;
if (type == 0)
static const GIypelnfo info = {
si zeof (MamanBazd ass),

12

The Glib Dynamic Type System

NULL, /* base_init */
NULL, /* base finalize */
NULL, /* class_init */
NULL, /* class_finalize */
NULL, /* class_data */

si zeof (MamanBaz),
0, /* n_preallocs */
NUL L /* instance_init */

1
static const Anterfacelnfo ibaz_info = {
(A nterfacelnitFunc) baz_interface_init, /* interface_init */
NULL, /* interface finalize */
} NULL /* interface_data */
type = g _type register_static (G TYPE OBJECT,
"MamanBazType",
& nfo, 0);

g_type_add_interface_static (type,
MAMAN_| BAZ_TYPE,
& baz_i nfo);

return type;

g_type_add_interface_stati c recordsin the type system that a given type implements also Foolnter-
face (f oo_i nt erface_get _t ype returns the type of Foolnterface). The Glnterfacelnfo structure holds in-
formation about the implementation of the interface:

struct GAnterfacelnfo

G nterfacel nitFunc interface_init;
G nterfaceFinalizeFunc interface finalize;
gpoi nter i nterface_dat a;

Interface Initialization

When an instantiable classed type which registered an interface implementation is created for the first time, its
class structure is initialized following the process described in the section called “ Instantiable classed types: ob-
jects’. Once the class structure is initidized,the function type_cl ass_i nit_Wn (implemented in
gtype. c) initidizes the interface implementations associated with that type by calling
type_iface_vtabl e_i ni t _Wnfor each interface.

First a memory buffer is allocated to hold the interface structure. The parent's interface structure is then copied
over to the new interface structure (the parent interface is already initialized at that point). If there is no parent
interface, the interface structure is initialized with zeros. The g_type and the g_instance_type fields are then ini-
tialized: g_typeis set to the type of the most-derived interface and g_instance_type is set to the type of the most
derived type which implements thisinterface.

Finally, the interface’ most-derived base_i ni t function and then the implementation'si nt erf ace_i ni t
function are invoked. It is important to understand that if there are multiple implementations of an interface the
base _init andi nterface_init functionswill be invoked once for each implementation initialized.

It is thus common for base init functions to hold alocal static boolean variable which makes sure that the inter-
facetypeisinitialized only once even if there are multiple implementations of the interface:
static void
manman_i baz_base_init (gpointer g_cl ass)
static gboolean initialized = FALSE;
if (Yinitialized) {

13

The Glib Dynamic Type System

/* create interface signals here. */
initialized = TRUE

If you have found the stuff about interface hairy, you are right: it is hairy but there is not much | can do about it.
What | can do is summarize what you need to know about interfaces:

The above process can be summarized as follows:

Table2.2. Interface Initialization

Invoca- |Function |Function's parameters
tion time |Invoked

Firstcall |interface’ |On interface' vtable
to base init
g_type |function
_creat
e_inst
ance for
typeim-
plement-
ing inter-
face
Firstcall |interface’ |On interface' vtable
to inter-
g_type |face init
_creat |(function
e_inst
ance for
typeim-
plement-
ing inter-
face

It is highly unlikely (ie: | do not know of anyone who actually used it) you will ever need other more fancy
things such as the ones described in the following section (the section called “ Interface Destruction”).

Interface Destruction

When the last instance of an instantiable type which registered an interface implementation is destroyed, the in-
terface's implementations associated to the type are destroyed by t ype_i f ace_vt abl e_final i ze_Wn(in

gtype. c).

type_iface_vtabl e finalize Wninvokes first the implementation'si nt er f ace_fi nal i ze func-
tion and then the interface's most-derived base fi nal i ze function.

Again, it is important to understand, as in the section called “Interface Initialization”, that both i nt er -

face_finalizeandbase_finalize areinvoked exactly once for the destruction of each implementation
of an interface. Thus, if you were to use one of these functions, you would need to use a static integer variable
which would hold the number of instances of implementations of an interface such that the interface's class is
destroyed only once (when the integer variable reaches zero).

The above process can be summarized as follows:

Table23.Interface Finalization

14

The Glib Dynamic Type System

Invoca- |Function |Function's parameters
tion time |Invoked

Last cal |interface’ |Oninterface vtable
to inter-
g_type |face final
free |izefunc-

i n- tion
stance

for type

imple-

menting

interface

Last call |interface’ |Oninterface' vtable
to base fina
g_type |lizefunc-
free |tion

i n-

f

15

The Glib Dynamic Type System

Invoca- |Function |Function's parameters
tion time |Invoked

or type
imple-
menting
interface

Now that you have read this section, you can forget about it. Please, forget it as soon as possible.

16

Chapter 3. Signals

Closures

Closures are central to the concept of asynchronous signal delivery which is widely used throughout GTK+ and
Gnome applications. A Closure is an abstraction, a generic representation of a callback. It is a small structure
which contains three objects:

« afunction pointer (the callback itself) whose prototype looks like:
return_type function_callback (... , gpointer user_data);

» theuser_data pointer which is passed to the callback upon invocation of the closure

» afunction pointer which represents the destructor of the closure: whenever the closure's refcount reaches
zero, this function will be called before the closure structure is freed.

The GClosure structure represents the common functionality of al closure implementations: there exist a differ-
ent Closure implementation for each separate runtime which wants to use the GObject type system. 5 The GOb-
ject library provides a simple GCClosure type which is a specific implementation of closures to be used with C/
C++ callbacks.

A GClosure provides simple services:

* Invocation (g_cl osur e_i nvoke): thisiswhat closures were created for: they hide the details of callback
invocation from the callback invocator.

* Notification: the closure notifies listeners of certain events such as closure invocation, closure invalidation
and closure finalization. Listeners can be registered with g_cl osure_add_finalize_notifier
(finalization notification), g_cl osure_add_i nval i date_notifi er (invalidation notification) and
g_cl osure_add_narshal _guar ds (invocation notification). There exist symmetric de-registration
functions for finalization and invalidation events (g_cl osure_renove_finalize_notifier and
g_cl osure_renove_inval i date_noti fi er) but not for the invocation process. 6

C Closures

If you are using C or C++ to connect a callback to a given event, you will either use the ssimple GCClosures
which have a pretty minimal API or the even simpler g_si gnal _connect functions (which will be presen-

ted a bit later :).
GO osure* g _ccl osure_new (GCal | back cal | back_func,
gpoi nt er user _dat a,
O osureNotify destroy_dat a);
GO osure* g _ccl osure_new swap (GCal | back cal | back_func,
gpoi nt er user _dat a,

GOl osureNotify destroy_data);
CC osure* g _signal _type_ccl osure_new (GType itype,
guint struct_offset);

5 In Practice, Closures sit at the boundary of language runtimes: if you are writing python code and one of your Python callback receives a
signal from one of GTK+ widgets, the C code in GTK+ needs to execute your Python code. The Closure invoked by the GTK+ object in-
vokes the Python callback: it behaves as anormal C object for GTK+ and as anormal Python object for python code.

6 Closures are refcounted and notify listeners of their destruction in a two-stage process:. the invalidation notifiers are invoked before the fi-
nalization notifiers.

17

Signals

g_ccl osur e_newwill create a new closure which can invoke the user-provided callback func with the user-
provided user_data as last parameter. When the closure is finalized (second stage of the destruction process), it
will invoke the destroy_data function if the user has supplied one.

g_ccl osure_new_swap will create a new closure which can invoke the user-provided callback_func with
the user-provided user_data as first parameter (instead of being the last parameter aswithg_ccl osur e_new).
When the closure is finalized (second stage of the destruction process), it will invoke the destroy _data function
if the user has supplied one.

non-C closures (for the fearless).

As was explained above, Closures hide the details of callback invocation. In C, callback invocation is just like
function invocation: it is a matter of creating the correct stack frame for the called function and executing a call
assembly instruction.

C closure marshallers transform the array of GVaues which represent the parameters to the target function into
a C-style function parameter list, invoke the user-supplied C function with this new parameter list, get the return
value of the function, transform it into a GValue and return this GVaue to the marshaller caller.

The following code implements a simple marshaller in C for a C function which takes an integer as first para-
meter and returns void.

g_cclosure_marshal VO D_INT (GO osure *cl osure,
Gval ue *return_val ue,
gui nt n_param val ues,
const Gval ue *param val ues,
gpoi nt er i nvocation_hint,
{ gpoi nt er mar shal _dat a)
typedef void (*@varshal Func_VO D__|I NT) (gpointer dat al,
gl nt arg 1,
gpoi nt er dat a2) ;

regi ster Gvarshal Func_VO D__I NT cal | back;
regi ster GCCl osure *cc = (GCO osure*) closure;
regi ster gpoi nter datal, data?2;

g_return_if_fail (n_paramyvalues == 2);

datal = g_val ue_peek_pointer (paramvalues + 0);
dat a2 = cl osure->dat a;

cal | back = (Gvarshal Func_VO D _INT) (marshal _data ? nmarshal data : cc->call back);

cal | back (datail,
g_mar shal _val ue_peek_i nt (paramvalues + 1),
dat a2) ;

Of course, there exist other kinds of marshallers. For example, James Henstridge wrote a generic Python mar-
shaller which is used by all python Closures (a python closure is used to have python-based callback be invoked
by the closure invocation process). This python marshaller transforms the input GVaue list representing the
function parameters into a Python tupple which is the equivalent structure in python (you can look in
pyg_cl osure_mar shal inpygtype. c inthe pygtk module in Gnome cvs server).

Signals

GObject's signals have nothing to do with standard UNIX signals: they connect arbitrary application-specific
events with any number of listeners. For example, in GTK+, every user event (keystroke or mouse move) is re-
ceived from the X server and generates a GTK+ event under the form of a signal emission on a given object in-
stance.

18

Signals

Each signal is registered in the type system together with the type on which it can be emitted: users of the type
are said to connect to the signal on a given type instance when they register a closure to be invoked upon the
signal emission. Users can also emit the signal by themselves or stop the emission of the signal from within one
of the closures connected to the signal.

When a signal is emitted on a given type instance, all the closures connected to this signal on this type instance
will beinvoked. All the closures connected to such asignal represent callbacks whose signature looks like:

return_type function_call back (gpointer instance, ... , gpointer user_data);

Signal registration

To register anew signal on an existing type, we can useany of g_si gnal _new, g_si gnal _new val i st
or g_si gnal _newfunctions:

gui nt g_signal _new (const gchar *si gnal _nane,
GType itype,
GSi gnal Fl ags signal _fl ags,
GO osure *cl ass_cl osur e,
GSi gnal Accurmul at or accunul at or,
gpoi nt er accu_dat a,
GSi gnal Cvar shal l er c_marshal l er,
Glype return_type,
gui nt n_par amns,
Glype *par am t ypes);

The number of parameters to these functions is a bit intimidating but they are relatively simple:

» signal_name: isastring which can be used to uniquely identify a given signal.

* itype: istheinstance type on which this signal can be emitted.

» signa_flags: partly defines the order in which closures which were connected to the signal are invoked.

» class _closure: thisisthe default closure for the signal: if it is not NULL upon the signal emission, it will be
invoked upon this emission of the signal. The moment where this closure is invoked compared to other clos-
ures connected to that signal depends partly on the signal_flags.

» accumulator: this is a function pointer which is invoked after each closure has been invoked. If it returns
FALSE, signal emission is stopped. If it returns TRUE, signa emission proceeds normally. It is also used to
compute the return value of the signal based on the return value of all the invoked closures.

e accumulator_data: this pointer will be passed down to each invocation of the accumulator during emission.

e ¢ _marshaller: thisisthe default C marshaller for any closure which is connected to this signal.

* return_type: thisisthe type of the return value of the signal.

e n_params: thisisthe number of parametersthis signal takes.

e param_types: thisis an array of GTypes which indicate the type of each parameter of the signal. The length
of thisarray isindicated by n_params.

As you can see from the above definition, a signa is basically a description of the closures which can be con-
nected to this signal and a description of the order in which the closures connected to this signal will be invoked.

Signal connection

If you want to connect to a signal with a closure, you have three possibilities:

19

Signals

* You can register aclass closure at signal registration: this is a system-wide operation. i.e.: the class _closure
will be invoked during each emission of a given signal on all the instances of the type which supports that
signal.

* You can use g_signal _override_cl ass_cl osure which overrides the class closure of a given
type. It is possible to call this function only on a derived type of the type on which the signal was registered.
Thisfunction is of use only to language bindings.

* You can register a closure with the g_si gnal _connect family of functions. This is an instance-specific
operation: the closure will be invoked only during emission of a given signal on a given instance.

It is also possible to connect a different kind of callback on a given signal: emission hooks are invoked whenev-
er agiven signal is emitted whatever the instance on which it is emitted. Emission hooks are used for exampleto
get all mouse_clicked emissions in an application to be able to emit the small mouse click sound. Emission
hooks are connected with g_signal _add_em ssi on_hook and removed with
g_signal _renmove_em ssi on_hook.

Signal emission

Signal emission is done through the use of theg_si gnal _eni t family of functions.

voi d g_signal _emtv (const Gval ue *instance_and_par ans,
gui nt signal _id,
GQuar k detail,
Gval ue *return_val ue);

e Theinstance_and params array of GValues contains the list of input parameters to the signal. The first ele-
ment of the array is the instance pointer on which to invoke the signal. The following elements of the array
contain the list of parametersto the signal.

e signa_ididentifiesthe signal to invoke.

» detail identifies the specific detail of the signa to invoke. A detail is akind of magic token/argument which
is passed around during signal emission and which is used by closures connected to the signal to filter out
unwanted signal emissions. In most cases, you can safely set this value to zero. See the section called “The
detail argument” for more details about this parameter.

» return_value holds the return value of the last closure invoked during emission if no accumulator was spe-
cified. If an accumulator was specified during signal creation, this accumulator is used to calculate the re-
turn_value as a function of the return values of all the closures invoked during emission. 7 If no closure is
invoked during emission, the return_value is nonetheless initialized to zero/null.

Internally, the GValue array is passed to the emission function proper, si gnal _emt_unl ocked_R
(implementedingsi gnal . ¢). Signa emission can be decomposed in 5 steps:

* RUN_FIRST: if the G_SIGNAL_RUN_FIRST flag was used during signal registration and if there exist a
class closurefor thissignal, the class closureisinvoked. Jump to EMISSON _HOOK state.

* EMISSON_HOOK: if any emission hook was added to the signal, they are invoked from first to last added.
Accumulate return values and jump to HANDLER_RUN_FIRST state.

« HANDLER RUN FIRST: if any closure were connected with the g_si gnal _connect family of func-
tions, and if they are not blocked (with the g_si gnal _handl er bl ock family of functions) they are
run here, from first to last connected. Jump to RUN_LAST state.

—RUN+ASHH the G SIGNAL RUN_LAST f % as set durmg;u rﬁgystranon and if aclass closure was set,

Zrmgﬁrﬁ?éegm é@i ﬁ mg‘m&n have an accumul ator that ignores NULL returns

ator may try to return the list of values returned by the closures.
20

Signals

e HANDLER RUN_LAST: if any closure were connected with the g_si gnal _connect _aft er family of
functions, if they were not invoked during HANDLER_RUN_FIRST and if they are not blocked, they are
run here, from first to last connected. Jump to RUN_CLEANUP state.

* RUN_CLEANUP: if the G_SIGNAL_RUN_CLEANUP flag was set during registration and if a
class closure was ¢t it isinvoked here. Signal emission is completed here.
If, a any point during emission (except in RUN_CLEANUP state), one of the closures or emission hook stops

the signal emission withg_si gnal _st op, emission jumpsto CLEANUP state.

If, at any point during emission, one of the closures or emission hook emits the same signal on the same in-
stance, emission isrestarted from the RUN_FIRST state.

The accumulator function is invoked in all states, after invocation of each closure (except in EMIS
SION_HOOK and CLEANUP). It accumulates the closure return value into the signa return value and returns
TRUE or FALSE. If, at any point, it does not return TRUE, emission jumps to CLEANUP state.

If no accumulator function was provided, the value returned by the last handler run will be returned by
g_signal _emt.

The detail argument

All the functions related to signal emission or signal connection have a parameter named the detail. Sometimes,
this parameter is hidden by the API but it is always there, under one form or ancther.

Of the three main connection functions, only one has an explicit detail parameter as a GQuark 8:

gulong g_signal _connect _closure by id (gpoi nt er i nstance,
gui nt signal _id,
CQuar k detail,
GCl osure *cl osure,
gbool ean after);

The two other functions hide the detail parameter in the signal name identification:

gul ong g_signal _connect _cl osure (gpoi nt er i nst ance,
const gchar *det ai | ed_si gnal ,
Gl osure *cl osure,
gbool ean after);

gul ong g_signal _connect _data (gpoi nt er i nstance,

const gchar *detailed_signal,
CCal | back c_handl er,

gpoi nt er dat a,

GO osureNotify destroy_dat a,
GConnect Fl ags connect _fl ags);

Their detailed_signal parameter is a string which identifies the name of the signal to connect to. However, the
format of this string is structured to look like signal_name::detail_name. Connecting to the signal named noti-
fy::cursor_position will actually connect to the signal named notify with the cursor_position name. Internaly,
the detail string is transformed to a GQuark if it is present.

Of the four main signal emission functions, three have an explicit detail parameter as a GQuark again:

voi d g_signal _emitv (const Gval ue *i nstance_and_par ans,
gui nt signal _id,
GQuar k det ai |,
Gval ue *return_val ue);

voi d g_signal _emt _valist (gpointer i nstance,

8A GQuark is an integer which uniquely represents a string. It is possible to transform back and forth between the integer and string repres-
entations with the functionsg_quar k_from stringandg_quark_t o_string.

21

Signals

gui nt signal _id,
GQuar k detail,
va_|ist var _args);

voi d g_signal _emt (gpoi nt er i nstance,
gui nt signal _id,
GQuar k detail,
cl)

The fourth function hidesit in its signal name parameter:

voi d g_signal _emt by name (gpointer i nstance,
const gchar *det ai | ed_si gnal ,
coe)

The format of the detailed signa parameter is exactly the same as the format used by the
g_si gnal _connect functions: signal_name::detail_name.

If adetail is provided by the user to the emission function, it is used during emission to match against the clos-
ures which also provide a detail. The closures which provided a detail will not be invoked (even though they are
connected to asignal which is being emitted) if their detail does not match the detail provided by the user.

This completely optional filtering mechanism is mainly used as an optimization for signals which are often
emitted for many different reasons: the clients can filter out which events they are interested into before the
closure's marshalling code runs. For example, thisis used extensively by the notify signal of GObject: whenever
a property is modified on a GObject, instead of just emitting the notify signal, GObject associates as a detail to
this signal emission the name of the property modified. This allows clients who wish to be notified of changesto
only one property to filter most events before receiving them.

As asimple rule, users can and should set the detail parameter to zero: this will disable completely this optional
filtering.

22

Chapter 4. GObject: what Dbrings
everything together.

The two previous chapters discussed the details of Glib's Dynamic Type System and its signal control system.
The GObject library also contains an implementation for a base fundamental type named GObject.

GObject is afundamental classed instantiable type. It implements:

* Memory management with reference counting

+ Construction/Destruction of instances

» Generic per-object properties with set/get function pairs
e Easy useof signals

All the GTK+ objects and al of the objects in Ghome libraries which use the glib type system inherit from
GObject which iswhy it isimportant to understand the details of how it works.

Object instanciation

The g_obj ect _new family of functions can be used to instantiate any GType which inherits from the GOb-
ject base type. All these functions make sure the class and instance structures have been correctly initialized by
glib's type system and then invoke at one point or another the constructor class method which is used to:

» Allocate and clear memory through g _t ype_cr eat e_i nst ance,
« Initialize the object' instance with the construction properties.

Although one can expect all class and instance members (except the fields pointing to the parents) to be set to
zero, some consider it good practice to explicitly set them.

Objects which inherit from GObject are allowed to override this constructor class method: they should however
chain to their parent constructor method before doing so:

Ghj ect * (*constructor) (GType type, _
gul nt n_construct_properties,
GObj ect Const ruct Param *construct _properties);

The example below shows how MamanBar overrides the parent's constructor:

#def i ne MAMAN_TYPE_BAR (maman_bar _get _type ())

#defi ne MAMAN_BAR(obj) (G_TYPE_CHECK_|I NSTANCE_CAST ((obj), MAVAN TYPE_BAR, Mal
#defi ne MAMAN_BAR_CLASS(ki ass) (G_TYPE_CHECK_CLASS CAST ((klass), MAMAN TYPE BAR, Mam
#defi ne MAMAN_| S BAR(obj) (G_TYPE_CHECK | NSTANCE _TYPE ((o0bj), MAVAN_TYPE - BAR))
#define MAMAN | S BAR CLASS(kl ass) (G _TYPE _CHECK CLASS TYPE ((klass), MAMAN TYPE BAR))
#defi ne MAMAN_BAR GET_CLASS(obj) (G_TYPE_I NSTANCE GET_CLASS ((obj), MAMAN TYPE BAR, Ma

typedef struct _ManmanBar MananBar ;
typedef struct _MamanBar C ass MananBar C ass;

struct _MamanBar {
Gbj ect parent;
/* instance nmenbers */

b

struct _MamanBar O ass {

23

GObject: what brings everything together.

Gbj ect Cl ass parent;

/* class nenbers */

};

/* used by MAMAN TYPE BAR */
Glype maman_bar _get _type (void);

static GObject *

manman_bar _constructor (GType type,
gui nt n_construct_properties,
Gbj ect Construct Param *construct _properties)
Gbj ect *obj;
{

/* 1nvoke parent constructor. */
MamanBar Cl ass *Kkl ass;
Gbj ect G ass *parent _cl ass;
kl ass = MAMAN BAR CLASS (g_type_cl ass_peek (MAMAN TYPE BAR));
parent _class = G OBJECT_CLASS (g _type_cl ass_peek_parent (klass));
obj = parent _cl ass->constructor (type,
n_construct_properties,
construct _properties);

}
/* do stuff. */

return obj;

}

static void
maman_bar _i nstance_i nit (GIypel nstance *instance,
gpol nt er g_cl ass)

MamanBar *sel f = (MamanBar *)i nstance;
/* do stuff */

}

static void
manman_bar _class_init (gpointer g _cl ass,
gpoi nter g_cl ass_dat a)

Gbj ect G ass *gobj ect _class = G OBJECT_CLASS (g _cl ass);
MamanBar Cl ass *kl ass = MAMAN BAR CLASS (g_cl ass);

gobj ect _cl ass->constructor = maman_bar_constructor;

Glype manman_bar _get type (void)
{

static Glype type = 0;
if (type == 0)
static const GIypelnfo info = {

si zeof (MamanBar d ass),
NULL, /* base_init */
NULL, /* base_finalize */
manman_bar _class_init, /* class_init */
NULL, /* class_finalize */
NULL, /* class_data */
si zeof (MamanBar),

0, /* n_preallocs */
manman_bar i nstance_init /* instance_init */
1
type = g_type_register_static (G TYPE_OBJECT,
" MamanBar Type",
& nfo, 0);

return type;

24

GObject: what brings everything together.

}

If the user instantiates an object MamanBar with:

MamanBar *bar = g_obj ect _new (MAMAN TYPE BAR, NULL);

If this is the first instantiation of such an object, the maman_b_cl ass_i ni t function will be invoked after
any maman_b_base_cl ass_i ni t function. Thiswill make sure the class structure of this new object is cor-
rectly initialized. Here, manman_bar _cl ass_i nit is expected to override the object's class methods and
setup the class' own methods. In the example above, the constructor method is the only overridden method: it is
set to meman_bar _construct or.

Once g_obj ect _new has obtained areference to an initialized class structure, it invokes its constructor meth-
od to create an instance of the new object. Since it has just been overridden by maman_bar _cl ass_init to
manman_bar _construct or, thelatter is called and, because it was implemented correctly, it chains up to its
parent's constructor. The problem here is how we can find the parent constructor. An approach (used in GTK+
source code) would be to save the original constructor in a static variable from maman_bar _cl ass_init

and then to re-use it from manman_bar _const ruct or . Thisisclearly possible and very smple but | wastold
it was not nice and the prefered way is to use the g_type class peek and
g_type_cl ass_peek_parent functions.

Finally, at one point or another, g_obj ect _construct or isinvoked by the last constructor in the chain.
This function allocates the object's instance' buffer through g_t ype_cr eat e_i nst ance which means that
the instance init function is invoked at this point if one was registered. After instance init returns, the object is
fully initialized and should be ready to answer any user-request. Wheng_t ype_cr eat e_i nst ance returns,
g_obj ect _constructor sets the construction properties (ie: the properties which were given to
g_obj ect _new) and returns to the user's constructor which is then allowed to do useful instance initializa-
tion...

The process described above might seem a bit complicated (it is actually overly complicated in my opinion..)
but it can be summarized easily by the table below which lists the functions invoked by g_obj ect _newand
their order of invocation.

The array below lists the functionsinvoked by g _obj ect _newand their order of invocation:

Table4.1.g_obj ect _new

Invoca- |Function |Function's parameters
tion time |Invoked

First call |target On the inheritance tree of classes from fundamental type to target type. base_init isin-
to type's voked once for each class structure.

g_obj e |base init
ct _new |function

for target

type

First call |target On target type's class structure
to type's

g_obj e |class init
ct _new |function

for target

type

First cal |interface’ |On interface' vtable
to base init

g_obj e |[function

ct _new

for target

type

First call |interface’ |On interface vtable
to inter-

g_obj e [face init

25

GObject: what brings everything together.

Invoca- |Function |Function's parameters
tion time |Invoked

ct _new |[function

for target

type

Each call |target On object's instance
to type's

g_obj e |classcon-
ct _new |structor
for target |method:
type GObject-
Class-
>construc
tor

Each call |typ€esin- |On theinheritance tree of classes from fundamental type to target type. the instance init
to stance _ini | provided for each type isinvoked once for each instance structure.

g_obj e |tfunction
ct _new
for target

type

Readers should feel concerned about one little twist in the order in which functions are invoked: while, technic-
aly, the class constructor method is called before the GType's instance init function (since
g_type_create_instance which cals instance init is called by g_obj ect _construct or which is
the top-level class constructor method and to which users are expected to chain to), the user's code which runsin
a user-provided constructor will always run after GType's instance_init function since the user-provided con-
structor must (you've been warned) chain up before doing anything useful.

Object memory management

The memory-management API for GObjects is a bit complicated but the idea behind it is pretty simple: the goal
isto provide a flexible model based on reference counting which can be integrated in applications which use or
require different memory management models (such as garbage collection, aso...). The methods which are used
to manipulate this reference count are described below.

/*
Ref counti ng
*/
gpoi nt er g_obj ect _ref (gpoi nter obj ect);
voi d g_obj ect _unref (gpoi nt er obj ect);
/*
Weak References
*/
typedef void (*GAakNotify) (gpoi nt er dat a
Ghj ect *wher e_t he_obj ect _was);
voi d g_obj ect _weak_ref (Ghj ect *obj ect
GneakNot i fy notify,
gpoi nt er dat a) ;
voi d g_obj ect _weak_unr ef (Gbj ect *obj ect,
GneakNot i fy notify,
gpoi nt er dat a) ;
voi d g_obj ect _add_weak_poi nter (Cbj ect *obj ect
gpoi nt er *weak _poi nter | ocation);
voi d g_obj ect _renmove_weak poi nter (CGhj ect *obj ect
gpoi nt er *weak _poi nter_| ocation);
/*
Cycl e handling
*/
voi d g_obj ect _run_di spose (Gbj ect *obj ect) ;

26

GObject: what brings everything together.

Reference count

The functions g_obj ect _ref/g_obj ect _unref respectively increase and decrease the reference count.
None of these function is thread-safe. The reference count is, unsurprisingly, initialized to one by
g_obj ect _new which means that the caller is currenly the sole owner of the newly-created reference. When
the reference count reaches zero, that is, when g_obj ect _unr ef is called by the last client holding a refer-
ence to the object, the dispose and the finalize class methods are invoked.

Finally, after finalize isinvoked, g_t ype_free_i nstance is caled to free the object instance. Depending
on the memory alocation policy decided when the type was registered (through one of the
g_type_regi st er_* functions), the object's instance memory will be freed or returned to the object pool
for this type. Once the object has been freed, if it was the last instance of the type, the type's class will be des-
troyed as described in the section called “Instantiable classed types. objects’ and the section called
“Non-instantiable classed types: Interfaces.”.

The table below summarizes the destruction process of a GObject:

Table4.2. g _obj ect _unref

Invoca- |Function |Function's parameters
tion time |Invoked

Last call |target GObject instance
to type's dis-
g_obj e |poseclass
ct _unr |[function
ef foran
instance
of target
type

Last cal |target GObject instance
to type'sfi-
g_obj e [ndize
ct_unr |class

ef foran |function

instance

of target

type

Last cal |interface’ |On interface vtable
to inter-

g_obj e |face final
ct _unr |izefunc-
ef for tion

the last
instance
of target
type
Lastcal |interface’ |Oninterface' vtable
to base fina
g_obj e |lizefunc-
ct _unr |tion

ef for the
last in-
stance of
target
type

Last call |target On target type's class structure
to type's
g_obj e |class fina
ct _unr |lizefunc-

27

GObject: what brings everything together.

Invoca- |Function |Function's parameters
tion time |Invoked

ef for tion
the last
instance
of target
type
Lastcal |type's On the inheritance tree of classes from fundamental type to target type. base_init isin-
to base fina |voked once for each class structure.

g_obj e |lizefunc-
ct _unr [tion

ef for
the last
instance
of target

type

Weak References

Wesak References are used to monitor object finalization: g_obj ect _weak_r ef adds a monitoring callback
which does not hold a reference to the object but which is invoked when the object runs its dispose method. As
such, each weak ref can be invoked more than once upon object finalization (since dispose can run more than
once during object finalization).

g_obj ect _weak_unr ef can be used to remove a monitoring callback from the object.

Weak References are aso used to implement g _object _add weak pointer and
g_obj ect _renmove_weak_poi nt er. These functions add a weak reference to the object they are applied
to which makes sure to nullify the pointer given by the user when object is finalized.

Reference counts and cycles

Note: the following section was inspired by James Henstridge. | guess this means that all praise and all curses
will be directly forwarded to him.

GObject's memory management model was designed to be easily integrated in existing code using garbage col-
lection. Thisiswhy the destruction processis split in two phases: the first phase, executed in the dispose handler
is supposed to release all references to other member objects. The second phase, executed by the finalize handler
is supposed to compl ete the object's destruction process. Object methods should be able to run without program
error (that is, without segfault :) in-between the two phases.

This two-step destruction process is very useful to break reference counting cycles. While the detection of the
cycles is up to the external code, once the cycles have been detected, the external code can invoke
g_obj ect _di spose which will indeed break any existing cycles since it will run the dispose handler associ-
ated to the object and thus release all referencesto other objects.

Attentive readers might now have understood one of the rules about the dispose handler we stated a bit sooner:
the dispose handler can be invoked multiple times. Let's say we have a reference count cycle: object A refer-
ences B which itself references object A. Let's say we have detected the cycle and we want to destroy the two
objects. One way to do thiswould betoinvokeg_obj ect _di spose on one of the objects.

If object A releases all its references to all objects, this means it releases its reference to object B. If object B
was not owned by anyone else, thisisits last reference count which means this last unref runs B's dispose hand-
ler which, in turn, releases B's reference on object A. If thisis A's last reference count, this last unref runs A's
dispose handler which is running for the second time before A's finalize handler isinvoked !

The above example, which might seem a bit contrived can really happen if your GObject's are being by lan-
guage bindings. | would thus suggest the rules stated above for object destruction are closely followed. Other-
wise, Bad Bad Things will happen.

28

GObject: what brings everything together.

Object properties

One of GObject's nice featuresis its generic get/set mechanism for object properties. When an object is instanci-
ated, the object's class init handler should be used to register the object's properties with
g_object _class_install_property (implementedingobj ect. c).

The best way to understand how object properties work is by looking at areal example on how it is used:

/**/

/* 1nplenentation */

/**/

enum {
MAMAN_BAR CONSTRUCT_NAME = 1,
MAMAN_BAR PAPA NUMBER,

1

static void
maman_bar _i nstance_i nit (GIypel nstance *instance,
gpol nt er g_cl ass)

MamanBar *sel f = (MamanBar *)i nstance;

static void

manman_bar _set _property (GObject *obj ect,
gui nt property_id,
const Gval ue *val ue,
GPar anpec *pspec)

MamanBar *sel f = (MamanBar *) object;

switch (property_id) {

case MAMAN BAR CONSTRUCT_NAME: {
g free (self->private->nane);
sel f->private->name = g_val ue_dup_string (val ue);
g_print ("maman: %\n", sel f->private->nane);

br eak;

case MAMAN BAR PAPA NUMBER: ({
sel f->privat e->papa_nunber = g val ue_get uchar (val ue);
g_print ("papa: %\n",self->private->papa_nunber);

br eak;
def aul t:
/* We don't have any other property... */
G OBJECT_WARN | NVALI D_PROPERTY_| D(obj ect, property_id, pspec);

br eak;
}

}

static void

manman_bar _get property (GObject *obj ect,
gui nt property_id,
Gval ue *val ue,
GPar anSpec *pspec)

{

MamanBar *sel f = (MamanBar *) object;

switch (property_id)
case MAVAN BAR CONSTRUCT_NAME:
g_val ue_set _string (value, self->private->nane);

br eak;
case MAMAN BAR PAPA NUMBER: ({
g_val ue_set _uchar (val ue, self->private->papa_nunber);

29

GObject: what brings everything together.

br eak;
def aul t:
/* We don't have any other property... */
G OBJECT_WARN | NVALI D_PROPERTY_I D(obj ect, property_id, pspec);
br eak;
}
}

static void

maman_bar _class_init (gpointer g class,
gpointer g _class_data)

{

GObj ect O ass *gobject class = G OBJECT_CLASS (g _cl ass);
MamanBar Cl ass *kl ass = MAMAN BAR CLASS (g_cl ass);
GPar anSpec *pspec;

gobj ect _cl ass->set_property

manman_bar _set _property;
gobj ect _cl ass->get _property

manman_bar _get _property;

pspec = g_param spec_string ("maman- name",
"Maman construct prop",
"Set maman's nanme",
"no- nanme-set" /* default value */,
G_PARAM CONSTRUCT_ONLY | G_PARAM READVWRI TE) ;
g_object _class_install _property (gobject class,
MAMAN_BAR _CONSTRUCT_NANME,
pspec) ;

pspec = g_param spec_uchar ("papa-nunber",
"Nunber of current Papa",
"Set/ Get papa's nunber”,
0 /* mininumvalue */,
10 /* maxi mum val ue */,
2 /* default value */,
G_PARAM READVWRI TE) ;
g_object _class_install _property (gobject _class,
MAMAN_BAR _PAPA_NUMBER,

) pspec);
hkhkhkkhkhkhkhkhhhkhhhhhhkhhhhhhhhdhhhdhhhkhhhkhdhkrdhrrdrkx*x
/ /
/* Use */

/**/

Gbj ect *bar;

Gval ue val = {0,};

bar = g_obj ect_new (MAMAN_TYPE SUBBAR, NULL);

g value_ init (&al, G TYPE CHAR);

g _val ue_set char (&val, 11);

g_object _set _property (G OBJECT (bar), "papa-nunber", &val);

The client code just above looks simple but alot of things happen under the hood:

g_obj ect _set _property first ensures a property with this name was registered in bar's class init handler.
If so, it callsobj ect _set _property which first walks the class hierarchy, from bottom, most derived type,
to top, fundamental type to find the class which registered that property. It then tries to convert the user-
provided GVaueinto a GValue whose type if that of the associated property.

If the user provides a signed char GValue, as is shown here, and if the object's property was registered as an un-
signed int, g_val ue_t r ansf or mwill try to transform the input signed char into an unsigned int. Of course,
the success of the transformation depends on the availability of the required transform function. In practice,
there will almost always be a transformation 9 which matches and conversion will be caried out if needed.

After transformation, the GValue is validated by g_par am val ue_val i dat e which makes sure the user's
data stored in the GValue matches the characteristics specified by the property's GParamSpec. Here, the

9lts behaviour might not be what you expect but it is up to you to actually avoid relying on these transformations.

30

GObject: what brings everything together.

GParamSpec we provided in class _init has a validation function which makes sure that the GValue contains a
value which respects the minimum and maximum bounds of the GParamSpec. In the example above, the client's
GValue does not respect these constraints (it is set to 11, while the maximum is 10). As such, the
g_obj ect _set _property function will return with an error.

If the user's GValue had been set to avalid value, obj ect _set _property would have proceeded with call-
ing the object's set_property class method. Here, since our implementation of Foo did override this method, the
code path would jump to f 00_set _pr operty after having retrieved from the GParamSpec the param id 10
which had been stored by g_obj ect _cl ass_instal |l _property.

Once the property has been set by the object's set property class method, the code path returns to
g_obj ect _set _property which calls g_obj ect _notify_queue_t haw. This function makes sure
that the "notify" signal is emitted on the object's instance with the changed property as parameter unless notific-
ationswerefrozenby g _obj ect _freeze notify.

g_obj ect _t haw_not i f y can be used to re-enable notification of property modifications through the "noti-
fy" signal. It isimportant to remember that even if properties are changed while property change notification is
frozen, the "notify" signal will be emitted once for each of these changed properties as soon as the property
change notification is thawn: no property change is lost for the "notify" signal. Signal can only be delayed by
the notification freezing mechanism.

Accessing multiple properties at once

It is interesting to note that the g_obj ect _set and g_obj ect _set val i st (vararg version) functions
can be used to set multiple properties at once. The client code shown above can then be re-written as:

MananBar *f o0o0;

foo =/* */;

g_obj ect _set (G OBJECT (foo),
"papa- nunmber", 2,
"maman- nane", "test",
NULL) ;

The code above will trigger one notify signal emission for each property modified.

Of course, the _get versions are also available: g_obj ect _get and g_obj ect get val i st (vararg ver-
sion) can be used to get numerous properties at once.

Redly attentive readers now understand how g_object_new, g_object_new and
g_obj ect _new val i st work: they parse the user-provided variable number of parameters and invoke
g_obj ect _set on each pair of parameters only after the object has been successfully constructed. Of course,
the "notify" signal will be emitted for each property set.

10 It should be noted that the param_id used here need only to uniquely identify each GParamSpec within the FooClass such that the switch
used in the set and get methods actually works. Of course, this locally-unique integer is purely an optimization: it would have been possible
to use aset of if (stremp (a, b) == 0) {} elseif (strcmp (a, b) == 0) {} statements.

31

Chapter 5. How To ?

This chapter tries to answer the real-life questions of users and presents the most common scenario use-cases |
could come up with. The use-cases are presented from most likely to lesslikely.

How To define and implement a new GObject ?

Clearly, thisis one of the most common question people ask: they just want to crank code and implement a sub-
class of a GObject. Sometimes because they want to create their own class hierarchy, sometimes because they
want to subclass one of GTK+'s widget. This chapter will focus on the implementation of a subtype of GObject.
The sample source code associated to this section can be found in the documentation's source tarball, in the
sanpl e/ gobj ect directory:

 maman- bar. { h| c}: thisis the source for a object which derives from GObject and which shows how to
declare different types of methods on the object.

 manman- subbar. { h| c}: thisis the source for a object which derives from MamanBar and which shows
how to override some of its parent's methods.

* maman-f 0o. { h| c}: thisisthe source for an object which derives from GObject and which declaresasig-
nal.

e test. c:thisisthe main source which instantiates an instance of type and exercises their API.

Boilerplate header code

The first step before writing the code for your GObject is to write the type's header which contains the needed
type, function and macro definitions. Each of these elements is nothing but a convention which is followed not
only by GTK+'s code but also by most users of GObject. If you feel the need not to obey the rules stated below,
think about it twice:

» If your users are a bit accustomed to GTK+ code or any Glib code, they will be a bit surprised and getting
used to the conventions you decided upon will take time (money) and will make them grumpy (not a good
thing)

* You must assess the fact that these conventions might have been designed by both smart and experienced
people: maybe they were at least partly right. Try to put your ego aside.

Pick a name convention for your headers and source code and stick to it:

e Use adash to separate the prefix from the typename: nanman- bar . h and manan- bar . ¢ (thisis the con-
vention used by Nautilus and most Gnome libraries).

* usean underscore to separate the prefix from the typename: maman_bar . h and manan_bar . c.

» Do not separate the prefix from the typename: mananbar . h and mananbar . c. (this is the convention
used by GTK+)

| personally like the first solution better: it makes reading file names easier for those with poor eyesight like me.

When you need some private (internal) declarations in severa (sub)classes, you can define them in a private
header file which is often named by appending the private keyword to the public header name. For example, one
could use maman- bar - private. h, maman_bar _private. h or mananbar pri vate. h. Typicaly,
such private header files are not installed.

The basic conventions for any header which exposes a GType are described in the section called “ Conventions”.

32

How To ?

Most GObject-based code also obeys onf of the following conventions: pick one and stick to it.

If you want to declare a type named bar with prefix maman, name the type instance ManmanBar and its class
MamanBar Cl ass (nameis case-sensitive). It is customary to declare them with code similar to the follow-

ing:

/*
* Copyright/Licensing infornmation.
*/

#i f ndef MAMAN _BAR H
#def i ne MAMAN_BAR H

/*
* Potentially, include other headers on which this header depends.
*/

/*
* Type nacros.
*/

typedef struct _MamanBar MananBar ;
typedef struct _MamanBar d ass MananBar O ass;

struct _MamanBar {
Gbj ect parent;
/* instance nmenbers */

H

struct _MamanBar d ass {
Gbj ect d ass parent;
/* class nenbers */

b

/* used by MAMAN BAR TYPE */
Glype maman_bar _get type (void);

/*
* Met hod definitions.
* [

#endi f

Most GTK+ types declare their private fields in the public header with a /* private */ comment, relying on
their user's intelligence not to try to play with these fields. Fields not marked private are considered public
by default. The /* protected */ comment (same semantics as those of C++) isalso used, mainly in the GType
library, in code written by Tim Janik.

struct _MamanBar {
Gbj ect parent;

[* private */
i nt hsize;

b

All of Nautilus code and alot of Gnome libraries use private indirection members, as described by Herb Sut-
ter in his Pimpl articles (see Compilation Firewalls [http://www.gotw.ca/gotw/024.htm] and The Fast Pimpl
Idiom [http://www.gotw.ca/gotw/028.htm] : he summarizes the different issues better than | will).

typedef struct _MamanBar Private MamanBar Pri vat e;
struct _MamanBar {
Gbj ect parent;

33

http://www.gotw.ca/gotw/024.htm
http://www.gotw.ca/gotw/028.htm
http://www.gotw.ca/gotw/028.htm

How To ?

[* private */
MamanBar Pri vate *priv;

b

Note

Do not call thispr i vat e, asthat is aregistered c++ keyword.
The private structure is then defined in the .c file, instantiated in the object'si ni t function and destroyed in
the object'sf i nal i ze function.

static void manman_bar_finalize(GXject *object) {
MamanBar *sel f = MAMAN BAR (obj ect);

'g'_free (sel f->priv);

static void maman_bar _init (GTypel nstance *instance, gpointer g class) {

ManmanBar *self = MAMAN BAR (I nstance);
self->priv = g_new0(MamanBar Private, 1);

e A similar dternative, available since Glib version 2.4, is to define a private structure in the .c file, declare it
asaprivate structureincl ass_i nit usingg_type_cl ass_add_pri vat e and declare a macro to al-
low convenient accessto this structure. A private structure will then be attached to each newly created object
by the GObject system. Y ou dont need to free or allocate the private structure, only the objects or pointers
that it may contain.

typedef struct _MamanBar Private MamanBar Privat e;

struct _MamanBar Private {
int private field;

#defi ne MAMAN_BAR_GET_PRI VATE(0) (G_TYPE_I NSTANCE_GET_PRI VATE ((0), MAMAN BAR TYPE, N

static void
maman_bar_class_init (MamanBar O ass *kl ass)

{

g_t ype_cl ass_add_private (klass, sizeof (ManmanBarPrivate));
}
static int

manan_bar _get private field (MananBar *sel f)
MamanBar Pri vate *priv = MAMAN BAR GET_PRI VATE (sel f);

return priv->private_field;

Finally, there are different header include conventions. Again, pick one and stick to it. | personally use indiffer-
ently any of the two, depending on the codebase | work on: the rule is consistency.

» Some people add at the top of their headers a number of #include directives to pull in al the headers needed
to compile client code. This allows client code to simply #include "maman-bar.h".

» Other do not #include anything and expect the client to #include themselves the headers they need before in-

34

How To ?

cluding your header. This speeds up compilation because it minimizes the amount of pre-processor work.
This can be used in conjunction with the re-declaration of certain unused types in the client code to minim-
ize compile-time dependencies and thus speed up compilation.

Boilerplate code

In your code, the first step is to #include the needed headers: depending on your header include strategy, this
can be as simple as #include "maman-bar.h" or as complicated as tens of #include lines ending with #include
"maman-bar.h":

/*
* Copyright information
*/

#i ncl ude " manman-bar. h"

/* 1f you use Pinpls, include the private structure
* definition here. Some people create a maman-bar-private. h header
* which is included by the nmaman-bar.c file and which contains the
* definition for this private structure.
*
/
struct _ManmanBarPrivate {
i nt menber_1;
[* stuff */

/*
* forward definitions
*/

Implement maman_bar _get _t ype and make sure the code compiles:

Glype
manman_bar _get _type (void)

static Glype type = 0;
if (type == 0)
static const GIypelnfo info = {
si zeof (ManmanBar d ass),
NULL, /* base_init */
NULL, /* base finalize */
NULL, /* class_init */
NULL, /* class_finalize */
NULL, /* class_data */
si zeof (ManmanBar),
0, /* n_preallocs */
NULL /* instance_init */
1
type = g_type_register_static (G TYPE _OBJECT,
" MamanBar Type",
& nfo, 0);

return type;

Object Construction

People often get confused when trying to construct their GObjects because of the sheer number of different
ways to hook into the objects's construction process: it is difficult to figure which is the correct, recommended

way.

35

How To ?

Table 4.1, “g_object_new” shows what user-provided functions are invoked during object instanciation and in
which order they are invoked. A user looking for the equivalent of the ssimple C++ constructor function should
use the instance_init method. It will be invoked after al the parent's instance_init functions have been invoked.
It cannot take arbitrary construction parameters (as in C++) but if your object needs arbitrary parameters to
complete initialization, you can use construction properties.

Construction properties will be set only after al instance init functions have run. No object reference will be re-
turned to the client of g_obj ect _new> until al the construction properties have been set.

As such, | would recommend writing the following code first:

static void

manman_bar _init (Glypel nstance *i nst ance,
gpol nt er g_cl ass)

{

MamanBar *sel f = (MamanBar *)i nstance;
sel f->private = g_new0 (MamanBarPrivate, 1);

/[* initialize all public and private nenbers to reasonabl e default values. */
/* 1f you need specific consruction properties to conplete initialization,
* delay initialization conpletion until the property is set.
*/
}

And make sure that you set manman_bar _init as the type's instance init function in ma-
man_bar _get _t ype. Make sure the code builds and runs: create an instance of the object and make sure
manman_bar _init iscaled(addag_pri nt calinit).

Now, if you need special construction properties, install the propertiesin the class init function, override the set
and get methods and implement the get and set methods as described in the section called “ Object properties”.
Make sure that these properties use a construct only GParamSpec by setting the param spec's flag field to
G_PARAM_CONSTRUCT_ONLY: this helps GType ensure that these properties are not set again later by ma-
licious user code.

static void
bar _class_init (ManmanBar O ass *kl ass)

{
Gbj ect G ass *gobj ect _class = G OBJECT_CLASS (ki ass);
GPar anSpec *manman_par am spec;

gobj ect _cl ass->set _property = bar_set property;
gobj ect cl ass->get _property = bar_get property;

manman_par am spec = g_param spec_string ("mman",
"Maman construct prop",
"Set maman's nanme",
"no-name-set" /* default value */,
G_PARAM CONSTRUCT_ONLY | G_PARAM READVWRI TE) ;

g_object _class_install _property (gobject_cl ass,
PROP_MANAN,
manman_par am spec) ;

}

If you need this, make sure you can build and run code similar to the code shown above. Make sure your con-
struct properties can set correctly during construction, make sure you cannot set them afterwards and make sure
that if your usersdo not call g_obj ect _newwith the required construction properties, these will be initialized
with the default values.

| consider good taste to halt program execution if a construction property is set its default value. This allows you
to catch client code which does not give a reasonable value to the construction properties. Of course, you are
free to disagree but you should have a good reason to do so.

Some people sometimes need to construct their object but only after the construction properties have been set.

36

How To ?

Thisis possible through the use of the constructor class method as described in the section called “ Object instan-
ciation”. However, | have yet to see any reasonable use of this feature. As such, to initialize your object in-
stances, use by default the base_init function and construction properties.

Object Destruction

Again, it is often difficult to figure out which mechanism to use to hook into the object's destruction process:
when the last g_obj ect _unref function cal is made, a lot of things happen as described in Table 4.2,
“g_object_unref”.

The destruction process of your object must be split is two different phases: you must override both the dispose
and the finalize class methods.

struct _MamanBar Private {
gbool ean di spose_has_run;

static GObjectd ass parent _class = NULL;

static void
bar _di spose (Gbj ect *obj)

MamanBar *sel f = (MamanBar *)obj ;

if (self->private->dispose_has_run) {
/* 1f dispose did already run, return. */
return;

/* Make sure di spose does not run tw ce. */
obj ect - >pri vat e- >di spose_has_run = TRUE;

/
In di spose, you are supposed to free all types referenced fromthis
obj ect which mght thenselves hold a reference to self. Cenerally,
the nost sinple solution is to unref all nenbers on which you own a
ref erence.

/

* %k X X % X

/* Chain up to the parent class */
G OBJECT_CLASS (parent_cl ass)->di spose (obj);
}

static void
bar _finalize (Gbject *obj)

MamanBar *sel f = (MamanBar *)obj;

/*

* Here, conplete object destruction.
* You m ght not need to do nuch...
*/

g _free (self->private);

/* Chain up to the parent class */
G OBJECT_CLASS (parent_class)->finalize (obj);
}

static void
bar class_init (Bard ass *kl ass)

Gbj ect Cl ass *gobj ect _class = G OBJECT_CLASS (ki ass);

gobj ect _cl ass->di spose = bar _di spose;
gobj ect _class->finalize = bar_finalize;

37

How To ?

static void
maman_bar _init (Glypel nstance *i nst ance,

gpol nt er g_cl ass)
{
MamanBar *sel f = (MamanBar *)i nstance;
self->private = g_new0 (MamanBarPrivate, 1);
sel f->privat e->di spose_has_run = FALSE;
parent _class = g _type_cl ass_peek_parent (klass);
}

Add similar code to your GObject, make sure the code still builds and runs: dispose and finalize must be called
during the last unref. It is possible that object methods might be invoked after dispose is run and before finalize
runs. GObject does not consider this to be a program error: you must gracefully detect this and neither crash nor
warn the user. To do this, you need something like the following code at the start of each object method, to
make sure the object's datais still valid before manipulating it:

if (self->private->di spose_has_run) {
/* Dispose has run. Data is not valid anynore. */
return;

}

Object methods

Just as with C++, there are many different ways to define object methods and extend them: the following list
and sections draw on C++ vocabulary. (Readers are expected to know basic C++ buzzwords. Those who have
not had to write C++ code recently can refer to e.g. http://www.cplusplus.com/doc/tutorial/ to refresh their
memories.)

* non-virtual public methods,

* virtua public methods and

» virtual private methods

Non-virtual public methods

These are the simplest: you want to provide a simple method which can act on your object. All you needtodois
to provide a function prototype in the header and an implementation of that prototype in the sourcefile.

/* declaration in the header. */

voi d maman_bar _do_action (MamanBar *self, /* paranmeters */);
/* inplenentation in the source file */

voi d maman_bar _do_action (MamanBar *self, /* paranmeters */)

/* do stuff here. */

}

Thereisreally nothing scary about this.

Virtual public methods

Thisis the preferred way to create polymorphic GObjects. All you need to do is to define the common method
and its class function in the public header, implement the common method in the source file and re-implement
the class function in each object which inherits from you.

38

How To ?

/* declaration in maman-bar.h. */
struct _MamanBar C ass {
Gbj ect Cl ass parent;

[* stuff */
void (*do_action) (ManmanBar *self, /* paraneters */);

1
voi d maman_bar _do_action (MamanBar *self, /* parameters */);
/* inplenentation in nmaman-bar.c */

voi d maman_bar _do_action (MananBar *self, /* paraneters */)

MAMAN BAR GET_CLASS (sel f)->do_action (self, /* paraneters */);
}

The code above simply redirects the do_action call to the relevant class function. Some users, concerned about
performance, do not provide the manan_bar _do_act i on wrapper function and require users to de-reference
the class pointer themselves. This is not such a great idea in terms of encapsulation and makes it difficult to
change the object's implementation afterwards, should this be needed.

Other users, also concerned by performance issues, declare the naman_bar _do_acti on function inline in
the header file. This, however, makes it difficult to change the object's implementation later (although easier
than requiring users to directly de-reference the class function) and is often difficult to write in a portable way
(the inline keyword is not part of the C standard).

In doubt, unless a user shows you hard numbers about the performance cost of the function call, just ma-
man_bar _do_act i on inthe sourcefile.

Please, note that it is possible for you to provide a default implementation for this class method in the object's
class init function: initialize the klass->do_action field to a pointer to the actual implementation. You can also
make this class method pure virtual by initializing the klass->do_action field to NULL:

static void
maman_bar _real _do_action_two (MamanBar *self, /* parameters */)

{

/* Default inplenentation for the virtual nethod. */

}

static void
manman_bar _class_init (Bard ass *kl ass)

/* pure virtual nethod: nandates inplenentation in children. */
kl ass->do_acti on_one = NULL;

/* nmerely virtual nethod. */

kl ass->do_action_two = maman_bar_real do_acti on_two;

}

voi d maman_bar _do_action_one (MamanBar *self, /* parameters */)
MAMAN BAR GET_CLASS (sel f)->do_action_one (self, /* paranmeters */);
voi d maman_bar _do_action_two (MamanBar *self, /* parameters */)

MAMAN BAR GET _CLASS (self)->do_action_two (self, /* parameters */);
}

Virtual private Methods

These are very similar to Virtual Public methods. They just don't have a public function to call the function dir-
ectly. The header file contains only a declaration of the class function:

/* declaration in maman-bar.h. */
struct _MamanBar d ass {
Gbj ect Cl ass parent;

39

How To ?

[* stuff */
void (*hel per_do_specific_action) (MananBar *self, /* paraneters */);

voi d maman_bar _do_any_action (MamanBar *self, /* parameters */);

These class functions are often used to delegate part of the job to child classes:

/* this accessor function is static: it is not exported outside of this file. */
static void
maman_bar _do_specific_action (MamanBar *self, /* parameters */)

MAMAN BAR GET_CLASS (sel f)->do_specific_action (self, /* parameters */);
}
voi d maman_bar _do_any_action (MamanBar *self, /* paranmeters */)
{
/* random code here */
/-k
* Try to execute the requested action. Maybe the requested action cannot be inplenen
* here. So, we delegate its inplementation to the child class:
*/
maman_bar _do_specific_action (self, /* parameters */);

/* other random code here */

Again, it is possible to provide a default implementation for this private virtual class function:
static void
maman_bar _class_init (MamanBar C ass *kl ass)
/* pure virtual nethod: mandates inplenmentation in children. */
kl ass->do_specific_action_one = NULL;

/* merely virtual nethod. */
kl ass->do_specific_action_two = manan_bar_real _do_specific_acti on_two;

Children can then implement the subclass with code such as:

static void
manman_bar _subtype class_init (MamanBar SubTyped ass *kl ass)

MamanBar Cl ass *bar _cl ass = MAMAN BAR CLASS (ki ass);
/* inplenent pure virtual class function. */
bar cl ass->do_specific_action_one = nmaman_bar _subtype _do_specific_acti on_one;

}

Chaining up

Chaining up is often loosely defined by the following set of conditions:

» Parent class A defines a public virtual method named f 0o and provides a default implementation.
e Child class B re-implements method f 0o.
* Inthe method B::foo, the child class B callsits parent class method A::foo.

There are many usesto thisidiom:

40

How To ?

* You need to change the behaviour of a class without modifying its code. Y ou create a subclass to inherit its
implementation, re-implement a public virtual method to modify the behaviour slightly and chain up to en-
sure that the previous behaviour is not really modifed, just extended.

* You are lazy, you have access to the source code of the parent class but you don't want to modify it to add
method calls to new specialized method calls: it is faster to hack the child class to chain up than to modify
the parent to call down.

* You need to implement the Chain Of Responsability pattern: each object of the inheritance tree chains up to
its parent (typically, at the begining or the end of the method) to ensure that they each handler isrunin turn.

| am personally not really convinced any of the last two uses are really a good idea but since this programming
idiom is often used, this section attemps to explain how to implement it.

To explicitely chain up to the implementation of the virtual method in the parent class, you first need a handle to
the original parent class structure. This pointer can then be used to access the original class function pointer and
invokeit directly. 11

Thefunctiong_t ype_cl ass_peek_par ent isused to access the original parent class structure. Itsinput is
a pointer to the class of the derived object and it returns a pointer to the original parent class structure. The code
below shows how you could useit:

static void
b nethod to_call (B *obj, int a)
{

Bd ass *kl ass;

ACl ass *parent _cl ass;

klass = B GET_CLASS (obj);

parent _class = g type_class_peek parent (klass);

/* do stuff before chain up */
parent class->nethod to call (obj, a);
/* do stuff after chain up */

}

A lot of people who use thisidiom in GTK+ store the parent class structure pointer in a global static variable to
avoid the costly call tog_t ype_cl ass_peek_par ent for each function call. Typically, the class init call-
back initializes the global static variable. gt k/ gt khscal e. ¢ doesthis.

How To define and implement Interfaces ?

How To define Interfaces ?

The bulk of interface definition has already been shown in the section called “Non-instantiable classed types: In-
terfaces.” but | fedl it is needed to show exactly how to create an interface. The sample source code associated to
this section can be found in the documentation's source tarbal, in the sanple/inter-
face/ maman-i baz. { h| c} file

As above, thefirst step isto get the header right:

#i f ndef MAMAN | BAZ H

11The original adjective used in this sentence is not innocuous. To fully understand its meaning, you need to recall how class structures are
initialized: for each object type, the class structure associated to this object is created by first copying the class structure of its parent type (a
simple mentpy) and then by invoking the class init callback on the resulting class structure. Since the class _init callback is responsible for
overwriting the class structure with the user re-implementations of the class methods, we cannot merely use the modified copy of the parent
class structure stored in our derived instance. We want to get a copy of the class structure of an instance of the parent class.

41

How To ?

#defi ne MAMAN | BAZ_H

#i ncl ude <gli b-object. h>

#defi ne MAMAN_TYPE_| BAZ
#defi ne MAMAN_| BAZ(obj)

#define MAVAN | S | BAZ(obj)
#define MAMAN | S | BAZ CLASS(vt abl e)

man_i baz_get _type ())

TYPE_CHECK_| NSTANCE_CAST ((obj), MAMAN TYPE | BAZ

TYPE_CHECK_| NSTANCE_TYPE ((obj), MAMAN TYPE | BAZ
TYPE_CHECK_CLASS_TYPE ((vtable), MAVAN TYPE | BAZ

(rma

(G | -
#defi ne MAMAN_ IBAZ _ CLASS(vt abl e) (G_TYPE_CHECK_CLASS CAST ((vt abl e), MAMAN TYPE | BAZ

(G_

(G_

(G_

#define MAMAN | BAZ_GET_CLASS(i nst)

TYPE_| NSTANCE_GET_| NTERFACE ((i nst),

typedef struct _Mamanl baz Manmanl baz; /* dumy object */
typedef struct _Mamanl bazCl ass Mamanl bazd ass;

struct _Mamanl bazC ass {
Glypel nterface parent;

void (*do_action) (Manmanlbaz *self);

Glype maman_i baz_get type (void);

voi

d manan_i baz_do_action (Mamanl baz *sel f);

#endi f /*MAMAN | BAZ_H*/

This code is almost exactly similar to the code for a normal GType which derives from a GObject except for a

few

details:

The GET_CLASS macro is not implemented with G TYPE | NSTANCE GET_CLASS but with
G_TYPE_I NSTANCE_GET_| NTERFACE.

The instance type, Mamanlbaz is not fully defined: it is used merely as an abstract type which represents an
instance of whatever object which implements the interface.

The implementation of the Mamanlbaz type itself istrivial:

maman_i baz_get _t ype registersthe type in the type system.

manan_i baz_base_i nit isexpected to register the interface's signals if there are any (we will see a bit
(later how to use them). Make sure to use a static local boolean variable to make sure not to run the initializ-
ation code twice (as described in the section called “Interface Initialization”, base_i ni t is run once for
each interface implementation instanciation)

manan_i baz_do_acti on dereferences the class structure to access its associated class function and
calsit.

static void
manan_i baz_base_init (gpointer g class)

static gboolean initialized = FALSE;

}
}

f (linitialized) {
/* create interface signals here. */
initialized = TRUE;

Glype
manan_i baz_get type (void)

{

42

MAMAN TYPE

How To ?

static Glype type = 0;

if (type == 0) {

static const GIypelnfo info = {
si zeof (Mamanl bazd ass),
manmen_i baz_base_init, /* base_init */
NULL, /* base finalize */

NULL, /* class_init */
NULL, /* class finalize */
NULL, /* class_data */

01

0, /* n_preallocs */
NULL /* instance_init */

1
type = g _type register_static (G TYPE | NTERFACE, "Mamanl baz", & nfo, 0);

return type;

}

voi d maman_i baz_do_acti on (Manmanl baz *sel f)

MAMAN | BAZ_GET_CLASS (sel f)->do_action (self);

How To define and implement an implementation of an Inter-
face ?

Once the interface is defined, implementing it is rather trivial. Source code showing how to do this for the IBaz
interface defined in the previous section islocated in sanpl e/ i nt er f ace/ maman- baz. { h| c}.

The first step is to define anormal GType. Here, we have decided to use a GType which derives from GObject.
Its name is MamanBaz:

#i f ndef MAMAN_BAZ_H
#defi ne MAMAN_BAZ_H

#i ncl ude <gli b-object. h>

#defi ne MAMAN TYPE BAZ (maman_baz_get _type ())

#defi ne MAMAN_BAZ(obj) (G_TYPE_CHECK | NSTANCE_CAST ((obj), MAMAN TYPE_BAZ,
#defi ne MAMAN_BAZ_CLASS(vt abl e) (G_TYPE_CHECK_CLASS CAST ((vtable), MAMAN TYPE_BAZ,
#defi ne MAMAN_| S_BAZ(obj) (G_TYPE_CHECK | NSTANCE_TYPE ((obj), MAMAN TYPE BAZ))
#define MAMAN | S BAZ CLASS(vtable) (G _TYPE _CHECK CLASS TYPE ((vtable), MAMAN TYPE BAZ))
(G_TYPE_I NSTANCE_GET_CLASS ((inst), MAMAN TYPE_BAZ,

#defi ne MAMAN BAZ_GET_CLASS(i nst)

typedef struct _MamanBaz MananBaz;
typedef struct _MamanBazCd ass MananBazd ass;

struct _ManmanBaz {
Ghj ect parent;
i nt instance_nenber;

struct _MamanBazd ass {
Gbj ect Cl ass parent;

Glype maman_baz_get _type (void);

#endi f // MAMAN_BAZ_H

There is clearly nothing specifically weird or scary about this header: it does not define any weird API or de-
rives from aweird type.

43

How To ?

The second step isto implement manman_baz_get t ype:

Glype
manan_baz_get type (void)

static Glype type = 0;
if (type == 0)
static const GIypelnfo info = {

si zeof (MamanBazd ass),
NULL, /* base_init */
NULL, /* base finalize */
NULL, /* class_init */
NULL, /* class finalize */
NULL, /* class_data */
si zeof (MananBaz),

0, /* npreallocs */
baz i nstance_init /* instance_init */
}1
static const Anterfacelnfo ibaz_info = {
(A nterfacel nitFunc) baz interface init, /* interface_init */
NULL, /* interface finalize */
NULL /* interface_data */
1
type = g_type_register_static (G TYPE_OBJECT,
"MamanBazType",
& nfo, 0);

g_type_add_interface_static (type,
MAMAN TYPE_| BAZ,
& baz_info);

return type;

}

This function is very much like al the similar functions we looked at previously. The only interface-specific
code present hereisthecal tog type_add_i nterface_stati c whichisused toinform the type system
that this just-registered GType a so implements the interface MAMAN_TYPE_| BAZ.

baz _interface_init,theinterfaceinitiaization function, isaso pretty smple:

static void baz_do_action (MamanBaz *sel f)
g_print ("Baz inplenentation of 1Baz interface Action: Ox%.\n", self->instance_nenbe

static void
baz interface_init (gpointer g_i face,
gpoi nt er i face_dat a)

Mamanl bazCd ass *kl ass (Mamanl bazCl ass *)g_

i face
kl ass->do_action = (v0| d (*) (Mamanl baz *self))b

az _do_action;

static void
baz_instance_init (GIypel nstance *inst ance,
gpol nt er g_cl ass)

MamanBaz *sel f = (MamanBaz *)i nstance;
sel f->i nstance_nenber = Oxdeadbeaf;

}

baz_interface_init merely initializes the interface methods to the implementations defined by Maman-
Baz: manan_baz_do_act i on does nothing very useful but it could :)

Interface definition prerequisites

To specify that an interface requires the presence of other interfaces when implemented, GObject introduces the
concept of prerequisites: it is possible to associate alist of prerequisite interfaces to an interface. For example, if

44

How To ?

object A wishes to implement interface |11, and if interface 11 has a prerequisite on interface 12, A has to imple-
ment both |1 and |2.

The mechanism described above is, in practice, very similar to Java's interface 11 extends interface 12. The ex-
ampl e below shows the GObject equivalent:

type = g _type register_static (G TYPE | NTERFACE, "Mamanl bar", & nfo, 0);
/* Make the Mamanl bar interface require Mananlbaz interface. */
g _type_ interface add prerequisite (type, MAMAN TYPE | BAZ);

The code shown above adds the Mamanlbaz interface to the list of prerequisites of Mamanlbar while the code
below shows how an implementation can implement both interfaces and register their implementations:

static void ibar_do_another_action (MamanBar *self)

g_print ("Bar inplenentation of IBar interface Another Action: Ox%.\n", self->instan

static void
i bar _interface_init (gpointer g_iface,
gpoi nt er i face_dat a)

Mamanl bar Cl ass *kl ass = (Manmanl barC ass *)g i face;
kl ass->do_anot her _action = (void (*) (Manmanl bar *self))i bar_do_anot her _acti on;

}
static void ibaz_do_action (MananBar *self)
g_print ("Bar inplenentation of IBaz interface Action: Ox%.\n", self->instance_nenbe
static void
i baz_interface_init (gpointer g_iface,
gpoi nt er i face_dat a)

Mamanl bazCl ass *kl ass = (Mamanl bazC ass *)g_if
kl ass->do_action = (void (*) (Mamanl baz *self)

}

ace;
)i baz_do_acti on;

static void
bar _i nstance_init (GIypelnstance *instance,
gpol nt er g_cl ass)

MamanBar *sel f = (MamanBar *)i nstance;
sel f->i nstance_nenber = 0x666;

}

Glype
manan_bar _get _type (void)

static Glype type = 0;
if (type == 0)
static const Glypelnfo info = {
si zeof (MamanBar d ass),
NULL, /* base_init */
NULL, /* base finalize */
NULL, /* class_init */
NULL, /* class _finalize */
NULL, /* class_data */
si zeof (MamanBar),
0, /* n_preallocs */
} bar i nstance_init /* instance_init */

static const Anterfacelnfo ibar_info = {

45

How To ?

(A nterfacelnitFunc) ibar_interface_ init, /* interface_init */
NULL, /* interface finalize */
NULL /* interface_data */

1
static const A nterfacelnfo ibaz_info = {
(A nterfacelnitFunc) ibaz_interface_init, /* interface_init */
NULL, /* interface finalize */
NULL /* interface data */
type = g_type_register_static (G TYPE OBJECT,
"MamanBar Type",
& nfo, 0);

g_type add interface_static (type,
MAMAN_TYPE_| BAZ,
& baz_info);

g_type add interface_static (type,
MAMAN_TYPE | BAR,
& bar _i nfo);

return type;

}

It is very important to notice that the order in which interface implementations are added to the main object is
not random: g_t ype_i nt erface_stati ¢ must beinvoked first on the interfaces which have no prerequis-
ites and then on the others.

Complete source code showing how to define the Mamanlbar interface which requires Mamanlbaz and how to
implement the Mamanlbar interface is located in sanpl e/ i nterface/ maman-i bar.{h|c} and
sanmpl e/ i nt erface/ maman-bar. {h|c}.

Interface Properties

Starting from version 2.4 of glib, gobject interfaces can also have properties. Declaration of the interface proper-
ties is similar to declaring the properties of ordinary gobject types as explained in the section called “Object
properties’, except that g_obj ect _i nterface_i nstal | _property isused to declare the properties in-
stead of g_obj ect _class_install _property.

To include a property named 'name’ of type string in the maman_ibaz interface example code above, we only
need to add one 12 lineinthe maman_i baz_base_i nit 13 as shown below:

static void
manan_i baz_base_init (gpointer g class)

static gboolean initialized = FALSE;

if (tinitialized) {
/* create interface signals here. */

g_object _interface_install _property (g_class,
g_param spec_string ("name",
"maman_i baz_nanme",
“Narme of the Mamanl baz",
"maman",
G_PARAM READVRI TE)) ;
initialized = TRUE

One point worth noting is that the declared property wasn't assigned an integer 1D. The reason being that integer
IDs of properities are utilized only inside the get and set methods and since interfaces do not implement proper-
ties, thereis no need to assign integer IDs to interface properties.

12That really is one line extended to six for the sake of clarity
13The gobject_install_property can also be called from ¢l ass_i ni t but it must not be called after that point.

46

How To ?

The story for the implementers of the interface is also quite trivial. An implementer shall declare and define it's
properties in the usual way as explained in the section called “ Object properties’, except for one small change: it
shall declare the properties of the interface it implements using g_obj ect _cl ass_overri de_property
instead of g_obj ect _cl ass_install _property. The following code snipet shows the modifications
needed in the MamanBaz declaration and implementation above:

struct _MamanBaz {
Gbj ect parent;
gi nt i nstance_nenber;
gchar *nane; /* placehol der for property */

enum

ARG 0,
ARG_NANVE
}s

Glype
manman_baz_get type (void)

tic Glype type = 0;

(type == 0) _

static const GIypelnfo info = {

si zeof (MamanBazd ass),

NULL, /* base_init */

NULL, /* base_finalize */
baz class_init, /* class_init */
NULL, /* class_finalize */
NULL, /* class_data */

si zeof (ManmanBaz),

sta
if

0, /* n_preallocs */
baz_instance_init /* instance_init */
1
static const A nterfacelnfo ibaz_info = {
(A nterfacelnitFunc) baz _interface_init, /* interface_init */
NULL, /* interface finalize */
NULL /* interface data */
1
type = g_type_ register_static (G TYPE OBJECT,
"MamanBazType",
& nfo, 0);

g_type add interface_static (type,
MAMAN_TYPE_| BAZ,
& baz_info);

return type;

}

static void
maman_baz_cl ass_init (MananBazC ass * kl ass)

{
Gbj ect O ass *gobj ect cl ass;
gobj ect _class = (Gvjectd ass *) kil ass;
parent _class = g type_class ref (G TYPE OBJECT);

gobj ect _cl ass->set_property
gobj ect _cl ass->get _property

manman_baz_set _property;
manman_baz_get _property;

g_object _class_override_property (gobject_class, ARG NAME, "name");

}

static void
maman_baz_set property (GObject * object, guint prop_id,

47

How To ?

const Gval ue * val ue, GParanfSpec * pspec)

{
MamanBaz *baz;
Gbj ect *obj;
/[* it's not null if we got it, but it mght not be ours */
g_return_if_fail (G.IS MAMAN BAZ (object));
baz = MAMAN BAZ (object);
switch (prop_ |d) {
case ARG _NA
baz- >narre = g_val ue_get string (value);
br eak;
def aul t:
G OBJECT_WARN | NVALI D_PROPERTY_I D (object, prop_id, pspec);
br eak;
}
}

static void
manman_baz_get property (GObject * object, guint prop_id,
Gval ue * val ue, GParantpec * pspec)

{
MarmanBaz *baz;
/* it's not null if we got it, but it might not be ours */
g return_if fail (GIS TEXT PLUG N (object));
baz = MAMAN BAZ (object);
switch (prop |d) {
case ARG _NA
g_val ue_set _st ring (val ue, baz->nane);
br eak;
defaul t:
G OBJECT_WARN | NVALI D_PROPERTY_I D (object, prop_id, pspec);
br eak;
}
}

Howto create and use signals

The signal system which was built in GTypeis pretty complex and flexible: it is possible for its users to connect
at runtime any number of callbacks (implemented in any language for which a binding exists) 14 to any signal
and to stop the emission of any signal at any state of the signal emission process. This flexibility makes it pos-
sible to use GSignal for much more than just emit events which can be received by numerous clients.

Simple use of signals

The most basic use of signals is to implement simple event notification: for example, if we have a MamanFile
object, and if this object has a write method, we might wish to be notified whenever someone uses this method.
The code below shows how the user can connect a callback to the write signal. Full code for this simple ex-
ampleislocated insanpl e/ si gnal / maman-file.{h|c} andinsanpl e/ si gnal /test.c

file = g_object_new (MAMAN FI LE TYPE, NULL);

g_signal _connect (G OBJECT (file), "wite",
(CCal | back)write_event,
NULL) ;

14A python callback can be connected to any signal on any C-based GObject.

48

How To ?

manan_file wite (file, buffer, 50);
The MamanFile signal is registered in the class init function:

klass->wite signal _id =
g_signal _new ("wite",
G TYPE_FROM CLASS (g_cl ass),
G _SIGNAL_RUN_LAST | G_SIGNAL_NO RECURSE | G_SI GNAL_NO_HOOKS,
NULL /* class closure */,
NULL /* accumul ator */,
NULL /* accu_data */,
g_ccl osure_marshal _vO D__ VA D,
G TYPE_NONE /* return_type */,
0 /[* n_paranms */,
NULL /* paramtypes */);

and the signd isemited inmaman_file_ wite:

void maman_file wite (MamanFile *sel f, guint8 *buffer, guint32 size)

/* First wite data. */
/* Then, notify user of data witten. */
g_signal _emt (self, MAMAN FILE GET_CLASS (self)->wite_signal _id,
0 /* details */,
NULL) ;
}

As shown above, you can safely set the detail s parameter to zero if you do not know what it can be used for. For
adiscussion of what you could used it for, see the section called “ The detail argument”

The signature of the signal handler in the above example is defined as
g_ccl osure_marshal VA D__ VA D. Its name follows a simple convention which encodes the function
parameter and return value types in the function name. Specifically, the value infront of the double underscoreis
the type of the return value, while the value(s) after the double underscore denote the parameter types. The
header gobj ect / grmar shal . h definesaset of commonly needed closures that one can use.

How to provide more flexibility to users ?

The previous implementation does the job but the signal facility of GObject can be used to provide even more
flexibility to this file change notification mechanism. One of the key ideas is to make the process of writing data
to the file part of the signal emission process to allow users to be notified either before or after the datais writ-
ten to thefile.

To integrate the process of writing the data to the file into the signal emission mechanism, we can register a de-
fault class closure for this signal which will be invoked during the signal emission, just like any other user-
connected signal handler.

Thefirst step to implement thisideais to change the signature of the signal: we need to pass around the buffer to
write and its size. To do this, we use our own marshaller which will be generated through glib's genmarshall
tool. Wethus create afile named mar shal | . | i st which containsthe following single line:

VA D: PO NTER, Ul NT

and use the Makefile provided in sanpl e/ si gnal / Makefil e to generate the file named manan-
file-conmpl ex-marshall. c. ThisCfileisfinaly included in maman-fi | e- conpl ex. c.

Once the marshaller is present, we register the signal and its marshaller in the class init function of the object
MamanFileComplex (full source for this object is included in sanpl e/sig-
nal / maman-fil e- compl ex. {h| c}):

49

How To ?

CC osure *default _closure;
Glype paramtypes|2];

default _closure = g _cclosure_new (G CALLBACK (default write_signal handler),
(gpoi nt er) Oxdeadbeaf /* user_data */,
NULL /* destroy_data */);

param types[0] = G TYPE_PO NTER;

param types[1] = G_TYPE_U NT;

klass->wite signal _id =
g_signal _new ("wite"

G TYPE FRO\/I CLASS (g_cl ass),

G_SI GNAL_RUN _LAST | G SI GNAL_NO RECURSE | G_SI GNAL_NO HOCKS,

default_closure /* class closure */,
NULL /* accumul ator */,

NULL /* accu_data */,

maman_file_conpl ex_ VOID PO NTER_UI NT,
G TYPE_NONE /* return_type */,

2" 7* n_params */,

param types /* par am_types *1);

The code shown above first creates the closure which contains the code to complete the file write. This closure
isregistered as the default class_closure of the newly created signal.

Of course, you need to implement completely the code for the default closure since | just provided a skeleton:

static void

default _write_signal _handler (GObject *obj, guint8 *buffer, guint size, gpointer

g_assert (user_data == (gpoi nter)Oxdeadbeaf);
/* Here, we trigger the real file wite. */
g_print ("default signal handler: Ox% %\n", buffer, size);

Finally, the client code must invoke the maman_fi | e_conpl ex_wri t e function which triggers the signal
emission:

voi d maman_file_complex_wite (ManmanFil eCompl ex *self, guint8 *buffer, guint size)

/* trigger event */

g_signal _emt (self,
I\/AI\/AN FI LE COVMPLEX GET_CLASS (self)->wite_signal _id,
0, /* details */
buffer, size);

The client code (as shown in sanpl e/ si gnal / t est . ¢ and below) can now connect signal handlers before
and after the file write is completed: since the default signal handler which does the write itself runs during the
RUN_LAST phase of the signal emission, it will run after al handlers connected with g_si gnal _connect
and before all handlers connected with g_si gnal _connect _af t er. If you intent to write a GObject which
emits signals, | would thus urge you to create al your signals with the G_SIGNAL_RUN_LAST such that your
users have a maximum of flexibility as to when to get the event. Here, we combined it with
G _SIGNAL_NO_RECURSE and G_SIGNAL_NO_HOOKS to ensure our users will not try to do really weird
things with our GObject. | strongly advise you to do the same unless you really know why (in which case you
really know the inner workings of GSignal by heart and you are not reading this).

static void conplex_ wite_event _before (Gbject *file, guint8 *buffer, guint size,

g_assert (user_data == NULL);
g_print ("Complex Wite event before: Ox%, %\n", buffer, size);

50

user _d

gpoi |

How To ?

static void conplex wite event after (GObject *file, guint8 *buffer, guint size, gpoin

g_assert (user_data == NULL);
g_print ("Conplex Wite event after: Ox%, %\n", buffer, size);

static void test_file_conplex (void)

gui nt8 buffer[100];
Ghj ect *file;

file = g_object_new (MAMAN FI LE COVWPLEX TYPE, NULL);

g_signal _connect (G OBJECT (file), "wite",
(CCal | back) conpl ex_wite_event before,
NULL) ;

g_signal _connect _after (G OBJECT (file), "wite",
(CCal | back) conpl ex_wite_event_after,
NULL) ;

maman_file_conmplex_wite (MAVAN FILE COWPLEX (file), buffer, 50);

g_object _unref (G OBJECT (file));
}

The code above generates the following output on my machine:

Conpl ex Wite event before: Oxbfffe280, 50
default signal handl er: Oxbfffe280 50
Conpl ex Wite event after: Oxbfffe280, 50

How most people do the same thing with less code

For many historic reasons related to how the ancestor of GObject used to work in GTK+ 1.x versions, thereis a
much simpler 15 way to create a signal with a default handler than to create a closure by hand and to use the
g_signal _new.

For example, g_si ghal _new can be used to create a signal which uses adefault handler which is stored in the
class structure of the object. More specifically, the class structure contains a function pointer which is accessed
during signal emission to invoke the default handler and the user is expected to provideto g_si gnal _newthe
offset from the start of the class structure to the function pointer. 16

The following code shows the declaration of the MamanFileSimple class structure which contains thewr i t e
function pointer.

struct _MamanFil eSi npl ed ass {
Gbj ect Cl ass parent;

guint wite_signal id;

/* signal default handlers */
void (*wite) (MamanFil eSinple *self, guint8 *buffer, guint size);

b

151 personaly think that this method is horribly mind-twisting: it adds a new indirection which unecessarily complicates the overall code
path. However, because this method is widely used by all of GTK+ and GObject code, readers need to understand it. The reason why thisis
done that way in most of GTK+ isrelated to the fact that the ancestor of GObject did not provide any other way to create asignal with ade-
fault handler than this one. Some people have tried to justify that it is done that way because it is better, faster (I am extremly doubtfull
about the faster bit. As a matter of fact, the better bit also mystifies me ;-). | have the feeling no one really knows and everyone does it be-
cause they copy/pasted code from code which did the same. It is probably better to leave this specific triviato hacker legends domain...

16l would like to point out here that the reason why the default handler of a signal is named everywhere a class _closure is probably related
to the fact that it used to be really a function pointer stored in the class structure.

51

How To ?

The wite function pointer is initiaied in the class init function of the object to de-
fault_wite_signal handler:

static void
maman_file sinple class_init (gpointer g class,
gpointer g _class_data)

G OBJECT_CLASS (g_cl ass);
MAMVAN_FI LE_SI MPLE_CLASS (g cl ass);

Gbj ect C ass *gobj ect cl ass
MamanFi | eSi npl ed ass *kl ass

klass->wite = default_wite_signal handler;

Finally, the signal is created withg_si gnal _newin the same class init function:

kl ass->write_si gnal id =
g_signal _new ("wri te"
G TYPE FRO\/I CLASS (g_cl ass),
G SIGNAL_RUN LAST | G SI GNAL_NO_RECURSE | G_SI GNAL_NO_HOCKS,
G_STRUCT_OFFSET (MamanFi | eSi npl el ass, wite),
NULL /* accumul ator */,
NULL /* accu_data */,
manman_fil e_conpl ex VOID PO NTER_UI NT,
G TYPE_NONE /* return_type */,
2" 7* n_params */,
G _TYPE_PQO NTER,
G _TYPE_UI NT) ;

Of note, here, is the 4th argument to the function: it is an integer calculated by the G_ STRUCT _COFFSET macro
which indicates the offset of the member write from the start of the MamankileSimpleClass class structure. 17

While the complete code for this type of default handler looks less clutered as shown in sanpl e/ si g-
nal / maman-fil e-si npl e. { h| c}, it contains numerous subtleties. The main subtle point which everyone
must be aware of is that the signature of the default handler created that way does not have a user_data argu-
ment: default_write_signal handl er is different in sanpl e/ si g-
nal / maman-fil e- conpl ex. ¢ andinsanpl e/ si gnal / maman-fil e-si npl e. c.

If you have doubts about which method to use, | would advise you to use the second one which involves
g_si gnal _newrather than g_si gnal _newv: it is better to write code which looks like the vast majority of
other GTK+/Gobject code than to do it your own way. However, now, you know why.

How users can abuse signals (and why some think it is
good)

Now that you know how to create signals to which the users can connect easily and at any point in the signal
emission process thanks to g_signal _connect, g_signal _connect _after and
G_SIGNAL_RUN_LAST, itistimeto look into how your users can and will screw you. Thisis also interesting
to know how you too, can screw other people. Thiswill make you feel good and €l et.

The users can:

» stop the emission of the signal at anytime

» override the default handler of the signal if it is stored as a function pointer in the class structure (which is
the prefered way to create adefault signal handler, as discussed in the previous section).

In both cases, the original programmer should be as careful as possible to write code which is resistant to the
fact that the default handler of the signal might not able to run. This is obviously not the case in the example
used in the previous sections since the write to the file depends on whether or not the default handler runs
(however, this might be your goal: to allow the user to prevent the file write if he wishesto).

17GSignal uses this offset to create a special wrapper closure which first retrieves the target function pointer before calling it.

52

How To ?

If all you want to do is to stop the signal emission from one of the callbacks you connected yourself, you can
cal g_signal _stop_ by nane. Itsuseisvery smplewhichiswhy | won't detail it further.

If the signal's default handler is just a class function pointer, it is aso possible to override it yourself from the
class_init function of a type which derives from the parent. That way, when the signal is emitted, the parent
class will use the function provided by the child as asignal default handler. Of course, it is also possible (and re-
commended) to chain up from the child to the parent's default signal handler to ensure the integrity of the parent
object.

Overriding a class method and chaining up was demonstrated in the section called “Object methods’ which is
why | won't bother to show exactly how to do it here again.

53

Chapter 6. GObject related tools

Debugging reference count problems

The reference counting scheme used by GObject does solve quite afew memory management problems but also
introduces new sources of bugs. In large applications, finding the exact spot where a the reference count of an
Object is not properly handled can be very difficult. Hopefully, there exist at a too named refdbg/
[http://refdbg.sf.net/] which can be used to automate the task of tracking down the location of invalid code with
regard to reference counting. This application intercepts the reference counting calls and tries to detect invalid
behavior. It suports a filter-rule mechanism to let you trace only the objects you are interested in and it can be
used together with gdb.

Writing APl docs

The API documentation for most of the Glib, GObject, GTK+ and GNOME librariesis built with a combination
of complex tools. Typically, the part of the documentation which describes the behavior of each function is ex-
tracted from the specially-formatted source code comments by a tool named gtk-doc which generates docbook
xml and merges this docbook xml with a set of master xml docbook files. These xml docbook files are finaly
processed with xsltproc (asmall program part of the libxdlt library) to generate the final html output. Other tools
can be used to generate pdf output from the source xml. The following code excerpt shows what these com-
ments look like.

/**
* gtk _widget freeze child notify:
* @mM dget: a #& kW dget
*
* Stops enmission of "child-notify" signals on @i dget. The signals are
* queued until gtk wi dget_thaw child _notify() is called on @ dget.
*
* This is the anal ogue of g_object freeze notify() for child properties.
**/

voi d
gtk _wi dget freeze child notify (& kW dget *wi dget)
{

The great thoroughful documentation [http://devel oper.gnome.org/arch/doc/authors.html] on how to setup and
use gtk-doc in your project is provided on the gnome devel oper website. gtk-doc generates

http://refdbg.sf.net/
http://developer.gnome.org/arch/doc/authors.html

Chapter 7. GObject Version Changes

GObject was originaly part of GTK+ and, as such, was much less generic and was tied to the X windowing sys-
tem. After versions 1.0.x and 1.2.x of GTK+s, GObject was split, moved to GLib and was made much more
generic (it gained flexibility and complexity unfortunatly). The first versions of GLib which included GObject
were the unstable releases 1.3.x which lead to the stable GLib 2.0.x releases.

This document is focused on the 2.0.x series even though other stable releases such as 2.2.x were available at
that time mainly because all subsequent 2.x releases are supposed to be upward binary and source compatible.
Of course, afew new features poped up in GObject after 2.0.x and this chapter tries to give a quick introduction

to these new features. If you decide to use them, make sure you understand what this means in terms of library
version requirements for your customers.

GLib 2.2.x releases

This verson did not add many new features and fixed a few corner-case type bugs.
g_type_interface_prerequisites wasaddedtoimprovetheintrospection APIs.

GLib 2.4.x releases

This version adds afew conveniance features:

» G_DEFI NE_TYPE macros can be used to easily define new GObjects.
» Interfaces support properties (see the section called “ Interface Properties”).

» GType instances can now have a private data structure to hold private data members and implement the
pimpl idiom.

GLib 2.6.x releases

This version is under development and temporary snapshots can be found in the Ghome CV'S server under the
version name 2.5.x.

55

Chapter 8. GObject performance

Describe all Performance facts of GObject: memory use, speed...

56

