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Abstract. Combinatorial maps define a general framework which al-
lows to encode any subdivision of an n-D orientable quasi-manifold with
or without boundaries. Combinatorial pyramids are defined as stacks of
successively reduced combinatorial maps. Such pyramids provide a rich
framework which allows to encode fine properties of the objects (either
shapes or partitions). Combinatorial pyramids have first been defined in
2D. This first work has later been extended to pyramids of n-D gen-
eralized combinatorial maps. Such pyramids allow to encode stacks of
non orientable partitions but at the price of a twice bigger pyramid.
These pyramids are also not designed to capture efficiently the proper-
ties connected with orientation. The present work presents the design
of pyramids of n-D combinatorial maps and important notions for their
encoding and processing.
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1 Introduction

Pyramids of combinatorial maps have first been defined in 2D [1], and later
extended to pyramids of n-dimensional generalized maps by Grasset et al. [8].
Generalized maps model subdivisions of orientable but also non-orientable quasi-
manifolds [10] at the expense of twice the data size of the one required for
combinatorial maps. For practical use (for example in image segmentation), this
may have an impact on the efficiency of the associated algorithms or may even
prevent their use. Furthermore, properties and constrains linked to the notion
of orientation may be expressed in a more natural way with the formalism of
combinatorial maps. For these reasons, we are interested here in the definition
of pyramids of n-dimensional combinatorial maps.

The key notion for the definition of pyramids of maps is the operation of
simultaneous removal or contraction of cells. These two notions have been defined
in [5] (see also [6]) where the definitions have been related to the ones given in [4]
for generalized maps, as their validity was proved using the link between maps
and generalized maps established by Lienhardt [10].

After recalling some preliminaries about combinatorial maps and the main
results obtained in [5], we present in this paper two important notions in the
design of combinatorial pyramids: connecting walks and connecting darts se-
quences. These two notions should allow us to derive, in future works, efficient



encoding schemes and operations on pyramids of n-D maps the same way Brun
and Kropatsch did for 2-dimensional combinatorial pyramids in [2]. Intuitively,
a whole pyramid of successively reduced n-maps may be represented implicitly
by a single map and little additional information. In this context, connecting
walks which are introduced in Section 4, somehow fill the gap between two con-
secutive levels of the pyramid, whereas connecting dart sequences link any level
of a pyramid of map to the bottom one (or equivalently to any other level). The
definition of the latter sequence as well as a discussion of its expected use are
given in Section 5.

2 Maps and generalized maps in dimension n

An n-G-map is defined by a set of basic abstract elements called darts connected
by (n+ 1) involutions. More formally:

Definition 1 (n-G-map [10]) Let n ≥ 0, an n-G-map is defined as an (n+2)-
tuple G = (D, α0, . . . , αn) where:

– D is a finite non-empty set of darts;
– α0, . . . , αn are involutions on D (i.e. ∀i ∈ {0, . . . , n}, α2

i (b) = b) such that:
• ∀i ∈ {0, . . . , n− 1}, αi is an involution without fixed point (i.e. ∀b ∈ D,
αi(b) 6= b);

• ∀i ∈ {0, . . . , n− 2}, ∀j ∈ {i+ 2, . . . , n}, αiαj is an involution1.

The dual of G, denoted by G, is the n-G-map G = (D, αn, . . . , α0). If αn is
an involution without fixed point, G is said to be without boundaries or closed.
In the following we only consider closed n-G-maps with n ≥ 2.

Figure 1(a) shows a 2-G-map G = (D, α0, α1, α2) whose set of darts D
is {1, 2, 3, 4, −1,−2,−3,−4}, with the involutions α0 = (1,−1)(2,−2)(3,−3)
(4,−4), α1 = (1, 2)(−1, 3)(−2,−3)(4,−4), and α2 = (1, 2)(−1,−2)(3, 4)(−3,−4).

Let Φ = {φ1, . . . , φk} be a set of permutations on a set D. We denote by <Φ>
the permutation group generated by Φ, i.e. the set of permutations obtained by
any composition and inversion of permutations contained in Φ. The orbit of
d ∈ D relatively to Φ is defined by <Φ>(d) =

{
φ(d)

∣∣ φ ∈<Φ>}
. Furthermore,

we extend this notation to the empty set by defining <∅> as the identity map.
If Ψ = {ψ1, . . . , ψh} ⊂ Φ we denote <ψ1, . . . , ψ̂j , . . . , ψh>(d) =<Ψ \ {ψj}>(d).
Moreover, when there will be no ambiguity about the reference set Φ we will
denote by <ψ̂1, ψ̂2, . . . , ψ̂h>(d) the orbit <Φ \ Ψ>(d).

Definition 2 (Cells in n-G-maps [10]) Let G = (D, α0, . . . , αn) be an n-G-
map, n ≥ 1. Let us consider d ∈ D. The i-cell (or cell of dimension i) that con-
tains d is denoted by Ci(d) and defined by the orbit: Ci(d) =<α0, . . . , α̂i, . . . , αn>
(d).

1 Given two involutions αi, αj and one dart d, the expression dαiαj denotes αj ◦αi(d).
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Thus, the 2-G-map of Fig. 1(a) counts 2 vertices (v1 =<α1, α2>(1) = {1, 2}
and v2 = {−1, 3, 4,−4,−3,−2}), 2 edges (e1 =< α0, α2> (1) = {1,−1, 2,−2}
and e2 = {3, 4,−3,−4}), and 2 faces (the one bounded by e2 and the outer one).

Definition 3 (n-map [10]) An n-map (n ≥ 1) is defined as an (n + 1)-tuple
M = (D, γ0, . . . , γn−1) such that:

– D is a finite non-empty set of darts;
– γ0, . . . , γn−2 are involutions on D and γn−1 is a permutation on D such that:
∀i ∈ {0, . . . , n− 2}, ∀j ∈ {i+ 2, . . . , n}, γiγj is an involution.

The dual of M , denoted by M , is the n-map M = (D, γ0, γ0γn−1, . . . , γ0γ1).
The inverse of M , denoted by M−1 is defined by M−1 = (D, γ0, . . . , γn−2, γ

−1
n−1).

Note that Damiand and Lienhardt introduced a definition of n-map as an (n+1)-
tuple (D, βn, . . . , β1) defined as the inverse of the dual of our map M . If we forget
the inverse relationships (which only reverses the orientation), we have γ0 = βn

and βi = γ0γi for i ∈ {1, . . . , n − 1}. The application β1 is the permutation of
the map while (βi)i∈{2,...,n} defines its involutions.

Definition 4 (Cells in n-maps [10]) Let M = (D, γ0, . . . , γn−1) be an n-map,
n ≥ 1. The i-cell (or cell of dimension i) of M that owns a given dart d ∈ D is
denoted by Ci(d) and defined by the orbits:

∀i ∈ {0, . . . , n− 1} Ci(d) = < γ0, . . . , γ̂i, . . . , γn−1 > (d)
For i = n Cn(d) = < γ0γ1, . . . , γ0γn−1 > (d)

In both an n-map and an n-G-map, two cells C and C′ with different dimen-
sions will be called incident if C ∩ C′ 6= ∅. Moreover, the degree of an i-cell C

is the number of (i + 1)-cells incident to C, whereas the dual degree of C is the
number of (i−1)-cells incident to C. An n-cell (resp. a 0-cell) has a degree (resp.
dual degree) equal to 0.

An n-map may be associated to an n-G-map, as stated by the next definition.
This direct link between the two structures has been used in [5] to show that the
removal operation in maps which we present in Section 3 is properly defined.

Definition 5 (Map of the hypervolumes) Let G = (D, α0, . . . , αn) be an n-
G-map, n ≥ 1. The n-map HV (G) = (D, δ0 = αnα0, . . . , δn−1 = αnαn−1) is
called the map of the hypervolumes of G.

A connected component of a map (D, γ0, . . . , γn−1) is a set<γ0, . . . , γn−1>(d)
for some d ∈ D. Lienhardt [11] proved that if an n-G-mapG is orientable,HV (G)
has two connected components. In the following we only consider orientable n-
G-maps.

3 Cells removal in maps and G-maps

We recall here the main definitions and results about the simultaneous removal
of cells in (G-)-maps that have been presented in [5].
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Fig. 1. (a) A 2-G-map. (b) A 2-G-map G (top row) from which the two white vertices
are to be removed, yielding a map G′ (bottom row). The connecting walks CW0

G,G′(b) =

(b = b0, b1, b2) (second row) and CW0
G,G′(d) = (d = d0, d1, d2) (third row).

3.1 Cells removal in G-maps

As the number of (i + 1)-cells that are incident to it, the degree of an i-cell C

in an n-G-map G = (D, α0, . . . , αn) is the number of sets in the set ∆ =
{
<

α̂i+1 > (d)
∣∣ d ∈ C

}
. As part of a criterion for cells that may be removed from a

G-map, we need a notion of degree that better reflects the local configuration of
a cell: the local degree. A detailed justification for the following definition may
be found in [6].

Definition 6 (Local degree in G-maps) Let C be an i-cell in an n-G-map.

– For i ∈ {0, . . . , n− 1}, the local degree of C is the number
∣∣{<α̂i, α̂i+1>(b)

∣∣ b ∈ C
}∣∣

– For i ∈ {1, . . . , n}, the dual local degree of C is the number
∣∣{<α̂i−1, α̂i>(b)

∣∣ b ∈ C
}∣∣

The local degree (resp. the dual local degree) of an n-cell (resp. a 0-cell) is 0.

Intuitively, the local degree of an i-cell C is the number of (i + 1)-cells that
locally appear to be incident to C. It is called local because it may be different
from the degree since an (i+1)-cell may be incident more than once to an i-cell,
as illustrated in Fig. 1 where the 1-cell e2 is multi-incident to the 0-cell v2, hence
the cell v2 has a degree 2 and a local degree 3. On the other hand, the dual local
degree of an i-cell C is the number of (i− 1)-cells that appear to be incident to
C.

It is known since [3, 4] that cells that may be removed or contracted in a
G-map must satisfy a criterion which, although correct, was mistakenly called
“having a local degree 2”. In [6, 5], the notion of regularity, recalled below, was
introduced in order to state a new criterion based on the correct definition of
the local degree (Definitions 6 and 10). (Definitions 6 and 10).
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Definition 7 (Regular cell) An i-cell (i ≤ n − 2) in an n-G-map is said to
be regular if it satisfies the two following conditions:

a) ∀d ∈ C, dαi+1αi+2 = dαi+2αi+1 or dαi+1αi+2 6∈< α̂i, α̂i+1> (dαi+2αi+1),
and

b) ∀b ∈ C, bαi+1 /∈<α̂i, α̂i+1>(b)

Cells of dimension n− 1 are defined as regular cells too.

The following theorem shows that the criterion given by Damiand et al.
(which is given by condition ii)) is more restrictive than the actual notion of
local degree. (Condition ii) merely excludes cells with local degree 1.)

Theorem 1 For any i ∈ {0, . . . , n − 2}, an i-cell C is a regular cell with local
degree 2 if and only if

i) ∃b ∈ C, bαi+1 /∈< α̂i, α̂i+1 > (b), and
ii) ∀b ∈ C, bαi+1αi+2 = bαi+2αi+1

We may know describe families of sets of cells to be removed, which we call
removal kernels, and for which the simultaneous removal operation is properly
defined.

Definition 8 (Removal kernel) Let G be an n-G-map. A removal kernel Kr

in G is a family of sets {Ri}0≤i≤n where Ri, 0 ≤ i ≤ n, is a set of regular
i-cells (Definition 7) with local degree 2 (Definition 6), Rn = ∅, and all cells of
R = ∪n

i=0Ri are disjoint. We denote by R∗ = ∪C∈RC, the set of all darts in Kr.

The following definition for the simultaneous removal of cells is slightly sim-
pler and was proved to be equivalent ([6, Proposition 10]) to the one used in [4,
8].

Definition 9 (Cells removal in n-G-maps [5, 4]) Let G = (D, α0, . . . , αn)
be an n-G-map and Kr = {Ri}0≤i≤n−1 be a removal kernel in G. The n-G-map
resulting of the removal of the cells of R is G′ = (D′, α′0, . . . , α′n) where:

1. D′ = D \R∗;
2. ∀d ∈ D′, dα′n = dαn;
3. ∀i, 0 ≤ i < n, ∀d ∈ D′, dα′i = d′ = d(αiαi+1)kαi where k is the smallest

integer such that d′ ∈ D′.
We denote G′ = G \Kr or G′ = G \R∗.

3.2 Cells removal in n-maps

We recall here the definition of the simultaneous removal of cells in an n-map,
which was proved to be valid as it actually defines a map [5, Theorem 6]. As for
G-maps, we need a notion of local degree in a map.
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Definition 10 (Local degree in maps) Let C be an i-cell in an n-map.

– The local degree of C is the number

|{< γ̂i, γ̂i+1 > (b) | b ∈ C}| if i ∈ {0, . . . , n− 2}
|{< γ0γ1, . . . , γ0γn−2 > (b) | b ∈ C}| if i = n− 1

– The dual local degree of C is the number

|{< γ̂i, γ̂i−1 > (b) | b ∈ C}| for i ∈ {1, . . . , n− 1}
|{< γ0γ1, . . . , γ0γn−2 > (b) | b ∈ C}| for i = n

The local degree (resp. the dual local degree) of an n-cell (resp. a 0-cell) is 0.

A notion of regular cell in an n-map which derives from the same notion in G-
maps (Definition 7) has also been defined ([6, Definition 16]). With Definition 10,
it allows us to define removal kernels in maps the same way we did for G-maps
(Definition 8).

Definition 11 (Cells removal in n-maps [5]) Let M = (D, γ0, . . . , γn−1) be
an n-map and Sr = {Ri}0≤i≤n−1 a removal set in M . We define the (n−1)-tuple
M \ Sr = (D′, γ′0, . . . , γ′n−1) obtained after removal of the cells of Sr by:

– D′ = D \R∗;
– ∀i ∈ {0, . . . , n − 2}, ∀d ∈ D′, dγ′i = d(γiγ

−1
i+1)

kγi, where k is the smallest
integer such that d(γiγ

−1
i+1)

kγi ∈ D′.
– For i = n− 1, ∀d ∈ D′, dγ′n−1 = dγk+1

n−1 where k is the smallest integer such
that dγk+1

n−1 ∈ D′.

4 Connecting walks

The permutations or involutions which define the map resulting from a removal
operation are obtained by somehow following a path in the original map until
a surviving dart has been found (see Definitions 9 and 11). This leads to the
notion of the so called connecting walks which we define here and whose main
properties are described. Proof of the results presented in this section may be
found in [6].

In the sequel, if S = (d1, d2, . . . , dp) and S′ = (b1, b2, . . . , bq) are sequences of
darts in a (G-)map for {p, q} ⊂ N, then we denote by S◦ the sequence (d2, . . . , dp)
(i.e. S without its first dart), and by reverse(S) the sequence (dp, dp−1 . . . , d1).
Furthermore, we denote S ·S′ = (d1, . . . , dp, b1, . . . , bq). We also denote by last(S)
the last dart of S.
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4.1 Connecting walks in generalized maps

Definition 12 (Connecting walk in n-G-maps) Let G = (D, α0, . . . , αn) be
an n-G-map and Kr = {Ri}0≤i≤n be a removal kernel in G. Let G′ = G \
Kr = (D′, α′0, . . . , α′n). The i-connecting walk associated to a dart d ∈ D′ for
i ∈ {0, . . . , n}, denoted by CWi

G,G′(d), is the sequence of darts of D defined by:

CWi
G,G′(d) = (d0 = d, d1, . . . , dp)

where

– ∀u, 0 ≤ u ≤ p, du = d(αiαi+1)u,
– p = Min

{
k ∈ N|dkαi ∈ D′

}
.

It may be seen that the above definition is linked to the one of the removal
operation (Definition 11). To make this link explicit, we may first prove the
following property which states that darts of an i-connecting walk are, except
for the first one, darts of i-cells that have been removed ([9]). This property as
well as the next one is illustrated by Figure 1(b), in the 2D case for the ease of
visualization.

Property 1 With the notations of Definition 12, for all d ∈ D′ such that
CWi

G,G′(d) = (d0, d1, . . . , dp) we have:

∀k ∈ {1, . . . , p}, dk−1αi ∈ R∗i and dk ∈ R∗i
Using Property 1, it is clear from Definition 9 and Definition 11 that we also

have the following property, which relates i-connecting walks to the correspond-
ing involution α′i in the resulting map.

Property 2 Let G = (D, α0, . . . , αn) be an n-G-map, Kr be a removal kernel
in G, G′ = G \Kr = (D′, α′0, . . . , α′n) and d ∈ D′. For all i ∈ {0, . . . , n} we have

dα′i = last(CWi
G,G\Kr

(d))αi

In [7], Grasset defines connecting walks in G-maps in a slightly different
way. A first difference is that in Grasset’s definition, d does not appear at the
beginning of the sequence that defines CWi

G,G′(d), whereas the dart dpαi of
Definition 12 is added at the end of the sequence. On the other hand, consecutive
darts in a connecting walk as defined by Grasset are linked by alternately either
an αi or an αi+1 involution when they are always linked by the permutation
αiαi+1 in our definition. Thus, a connecting walks for a given dart and a given
dimension counts ((k−1)/2)+1 darts when the corresponding one with Grasset’s
definition has k ones.

Following the definition of [7], connecting walks that are distinct (up to re-
verse ordering and after removal of their last dart) are always disjoint [7, Propo-
sition 22]. With our definition the property simply becomes that connecting
walks are either equal or disjoint. In other words, a removed dart belongs to at
most one connecting walk for some i ∈ {0, . . . , n}. This result is stated by the
following proposition.
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Proposition 1 Let G = (D, α0, . . . , αn) be an n-G-map, Kr be a removal kernel
in G, and d be a dart of R∗i for 0 ≤ i ≤ n. The dart d belongs to at most one
connecting walk. In other words, the two following properties hold:

i) d ∈ ⋃
b∈D′ CWi

G,G\Kr
(b)∗ ⇒ ∃! b ∈ D′, d ∈ CWi

G,G\Kr
(b)◦∗

ii) ∀j ∈ {0, . . . , n} \ {i}, ∀b ∈ D′, d /∈ CWj
G,G\Kr

(b)◦∗

Furthermore, there exists a one-to-one correspondence between connecting
walks, as any i-connecting walk associated with a dart d ∈ D′ may be built from
the connecting walk associated with dα′i (with the notations of Definition 9).
This fact is illustrated on Figure 1(b). If connecting walks are associated with
involutions, the above mentioned correspondence coincides with the inversion of
a permutation.

Property 3 Let G be an n-G-map and Kr be a removal kernel in G. Let
G′ = G \ Kr = (D′, α′0, . . . , α′n). For all i ∈ {0, . . . , n − 1} and all d ∈ D′ ;
if CWi

G,G′(d) = (d0 = d, d1, . . . , dp) we have:

CWi
G,G′(dα

′
i) = (b0 = dα′i, b1, . . . , bp) where bk = dp−kαi for 0 ≤ k ≤ p

Since Property 1 does not guarantee that a dart always belong to a connecting
walk, all darts that have been removed may not be traversed by following all
the connecting walks. Hence we say that a removal kernel Kr is simple if the
following property holds:

∀i ∈ {0, . . . , n− 1}, ∀d ∈ Ri, ∃s ∈ D′
∣∣ d ∈ CWi

G,G′(s)
◦∗

By Proposition 1 the dart s is necessarily unique and we deduce the following
property.

Property 4 Faudrait donner l’intérêt de la chose If G is an n-G-map and Kr

is a simple removal kernel in G, then we have

D = D′ t

 ⊔

d∈D′, 0≤i≤n−1

CWi
G,G′(d)

◦∗




where
⊔

denotes the union of disjoint sets.

Simple removal kernels may be characterized, in a computationally more
efficient way, using the following proposition.

Proposition 2 A removal kernel Kr = {Ri}i=0,...,n in an n-G-map G is simple
if and only if:

∀i ∈ {0, . . . , n− 1}, ∀d ∈ R∗i , <αiαi+1>(d) ∩ D′ 6= ∅

where D′ is the set of darts of G \Kr.
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4.2 Connecting walks in maps

Definition 13 (Connecting walk in n-maps) Let M = (D, γ0, . . . , γn−1) be
an n-map and Kr = {Ri}0≤i≤n be a removal kernel in M . Let M = M \Kr =
(D′, γ′0, . . . , γ′n−1). The i-connecting walk associated to a dart d ∈ D′ for i ∈
{0, . . . , n}, denoted by CWi

M,M ′(d), is the sequence of darts of D defined by

CWi
M,M ′(d) = (d0 = d, d1, . . . , dp)

where

– For i ∈ {0, . . . , n− 2},
∀u, 0 ≤ u ≤ p, du = d(γiγ

−1
i+1)

u and p = Min
{
k ∈ N ∣∣ dkγi ∈ D′

}
– For i = n− 1,
∀u, 0 ≤ u ≤ p, du = dγu

n−1 and p = Min
{
k ∈ N

∣∣ dkγn−1 ∈ D′
}

Again, we have the two following properties which link the definition of the
removal operation of cells with the one of connecting walks.

Property 5 With the notations of Definition 13, for all d ∈ D′ such that
CWi

M,M ′(d) = (d0, d1, . . . , dp) we have:

∀k ∈ {1, . . . , p}, dk−1γi ∈ R∗i and dk ∈ R∗i
Property 6 Let M = (D, γ0, . . . , γn−1) be an n-map, Kr be a removal kernel
in M , M ′ = M \Kr = (D′, γ′0, . . . , γ′n−1) and d ∈ D′. For all i ∈ {0, . . . , n} we
have

dγ′i = last(CWi
M,M\Kr

(d))γi

As we claimed in our introduction, generalized maps do not allow to ma-
nipulate easily notions related with the orientation over the underlying quasi-
manifold, when the latter is orientable. This in due, in part, to the fact that
in this case a G-map, by using twice as many darts as really needed, actually
encodes the two possible orientations2 at the same time. A connecting walk in a
G-map, as defined in this paper, uses a fixed orientation by skipping darts. It is
therefore consistent with respect to this orientation property and, not surpris-
ingly, we have proved the following proposition.

Proposition 3 Let G = (D, α0, . . . , αn) be an n-G-map and M = HV (G) be
its n-map of the hypervolumes. Let Kr be a removal kernel in G, let G′ = G\Kr

and M ′ = M \ HV (Kr) = (D′, γ′0, . . . , γ′n−1). For any dart d ∈ D and any
i ∈ {0, . . . , n − 2}. The i-connecting walks of d respectively in G and M (with
respect to Kr and HV (Kr)) satisfy

CWi
G,G′(d) = CWi

M,M ′(d)

Furthermore, we have

CW(n−1)
G,G′ (d)◦ = reverse(CW(n−1)

M,M ′(dγ′−1
n−1)

◦)

2 Two orientations which are given by the two connected components of the map of
the hypervolumes.
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5 n-D Combinatorial pyramids

In this section we defined pyramids of combinatorial n-maps and introduce the
connecting dart sequences which will be of interest to derive a concise encoding
of pyramids.

Definition 14 (Pyramid of n-maps) A pyramid of n-maps with height h ∈ N
is an h-tuple (M0,K1, . . . ,Kh) where M0 is an n-map and Kl, l ∈ {1, . . . , h},
is a removal kernel for the map Ml−1, which is defined by Ml = Ml−1 \Kl for
l ∈ {1, . . . , h}.

When dealing with a pyramid of n-maps (M0,K1, . . . ,Kh), h ∈ N∗, we usu-
ally denote Ml = (Dl, γl,0, . . . , γl,n−1) for l ∈ {0, . . . , h}, and when no confusion
may arise we simply refer to a permutation ofMl as γl,i for i ∈ {0, . . . , n−1} with-
out mentioning the map Ml. We also shorten γ0,i as γi for all i ∈ {0, . . . , n− 1}.
Eventually, we denote Kl = {Rl,i}i=1,...,n.

We may now give the definition of a connected dart sequence which makes
the link, as shown by two propositions given further on, between any tow levels
of a pyramid the same way a connecting walk does between two consecutive
levels.

Definition 15 (Connecting dart sequence) Let (M0,K1, . . . ,Kh) be a pyra-
mid of n-maps. For l ∈ {0, . . . , h}, we define the i-connecting dart sequence
(0 ≤ i ≤ n) associated to a dart d ∈ Dl at level l as follows:

– For l = 0, CDSi
0(d) = (d), and

– for l ∈ {1, . . . , h}
• If i ≤ n− 2, CDSi

l(d) = GLi
l−1(d0) ·GLi

l−1(d1) · . . . ·GLi
l−1(dp)

where:




(d = d0, . . . , dp) = CWi
Ml−1,Ml

(d)
∀r ∈ {0, . . . , p− 1}, GLi

l−1(dr) = CDSi
l−1(dr) · CDSi+1

l−1(drγl−1,i)◦

GLi
l−1(dp) = CDSi

l−1(dp)

• If i = n− 1, CDSn−1
l (d) = CDSn−1

l−1 (d0) ·CDSn−1
l−1 (d1) · . . . ·CDSn−1

l−1 (dp)
where (d = d0, . . . , dp) = CWn−1

Ml−1,Ml
(d).

One may obviously not expect the darts of a such defined connecting dart
sequence to belong to removed cells of a single dimension, as it is the case for
connecting walks (Propositions 1 and 5). For example, darts of the connecting
dart sequence CDS0

2(b) in Figure 2 belong to both 1-cells and 0-cells which have
been removed from M0 and M1, respectively. Still, the first dart of a connecting
dart sequence at level l is the only dart belonging to Dl. Indeed, we have the
following proposition.

Proposition 4 Let (M0,K1, . . . ,Kh) be a pyramid of n-maps and l ∈ {1, . . . , h}.
For all dart d ∈ Dl and i ∈ {0, . . . , n− 1} we have CDSi

l(d)
◦∗ ∩ Dl = ∅.
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Fig. 2. A 3D combinatorial pyramid (M0, K1, K2). (a) The 3-map M0. (b) The 3-map
M1 obtained after removing the edges e1 and e2 from M0. (c) The map M2 obtained
after removing the vertices v1, v2, and v3 from M1. Four involutions γ0 are materialized
by two dotted lines. (d) The connecting dart sequence CDS0

2(b) (black darts). (e) The
connecting dart sequence CDS0

2(b) (black darts).

Connecting dart sequences also share with connecting walks the property
that the last dart of an i-connecting dart sequence associated with a dart d at
level l is linked with the dart dγl,i by the permutation γi.

Proposition 5 Let (M0,K1, . . . ,Kh) be a pyramid of n-maps for h ∈ N∗, with
the notations of Definition 15. Let d ∈ Dl for l ∈ {1, . . . , h}. We have

last(CDSi
l(d))γ0,i = dγl,i

Furthermore, we shall prove in a forthcoming paper that consecutive darts
in a connecting dart sequence at level l are related in the bottom map M0,
and that these relations only depend on the position of some darts relatively to
the sets Rk,j for k ∈ {0, . . . , l − 1} and j ∈ {0, . . . , n − 1}. This property will
allow us to provide an iterative definition for connecting dart sequences which,
in turn, yields a mean to retrieve the value of any permutation γl,i, hence to
build efficiently any map Ml, 0 ≤ l ≤ h. Indeed, it will be possible to follow
the i-connecting dart sequence corresponding to the application of γl,i from the
knowledge of the sets Rk,j and finally use Proposition 5. As all the latter sets
are disjoint, labeling each dart of the map M0 with its highest surviving level
and the dimension of the relevant cell being removed will be sufficient to store
the whole pyramid and efficiently retrieve any of its levels using an approach
similar to the one presented in [2].

6 Conclusion

Using the definition given in [6] for the simultaneous removal of cells in an n-
map, we have defined here n-dimensional combinatorial pyramids the way Brun
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and Kropatsch did in the two-dimensional case ([1]) and following the works of
Grasset et al. about pyramids of generalized maps ([8]). The next step of this
work consists in the definition of an implicit encoding of such pyramids (see [2]),
based on the notion of a connecting dart sequence that have also been introduced
here.
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