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Abstract. The scale set theory allows to define a hierarchy of segmen-
tations according to a scale parameter. This theory closely related to
the Bayesian and the Minimum description Length(MDL) frameworks
describes the energy of a partition as the sum of two terms : a goodness
to fit and a regularisation term. This last term may be interpreted as the
encoding cost of the model associated to the partition. It usually includes
the total length of the partition’s boundaries and is simply computed as
the number of lignels between the regions of the partition. We propose
to use a better estimation of the total length of the boundaries by using
discrete length estimators. We state the basic properties which must be
fulfilled by these estimators and show their influence on the partitition’s
energy.

1 Introduction

1.1 Context

Different structures may be observered in a same image at different scales. The
pioneer work of Witkins [| introduced the notion of continuous representation
in scale. Using this representation a 1D signal is represented by a 2D function
f(t,o). This scale-space representation enphase the fact that the value of a point
t depends both on the position ¢ of the observation and of the scale at which
the observation is performed. The scale space representation representents thus
the content of a signal or an image at different scales. From this point of view,
the work of Witkins is quite from the the Gaussian pyramids or Wavelet [| rep-
resentations. However, using a representation a partition of an image is deduced
afterwards from the multi scale description of its content. In other worlds, the
scale space representation do not readily allows to encode the evolution of a
partition according to a scale parameter. Laurent Guigues [] introduced



2 Combinatorial Pyramids

2.1 Combinatorial maps
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Fig. 1. The ideal segmentation of image (a) is encoded by the combinatorial map G
(b). The borders of the partition are overlayed with the edge of the graph in figure (b).
The dual combinarotial map G is provided in (c).

A combinatorial map G = (D, 0, «) encodes a partition on an orientable
surface without boundary. Combinatorial maps are used within the image pro-
cessing and analysis framework to encode image’s partitions. Using 2D images,
combinatorial maps may be understood as a particular encoding of a planar
graph where each edge is split into two half-edges called darts (e.g. darts 1
and —1 in Fig. 1(b)). Since each edge connects two vertices, each dart belongs
to only one vertex. A 2D combinatorial map is formally defined by the triplet
G = (D, o,a) where D represents the set of darts and o is a permutation on
D whose cycles correspond to the sequence of darts encountered when turning
counter-clockwise around each vertex (e.g. cycle (—4, —3,1, —6) in Fig 1(b)). Fi-
nally « is an involution on D which maps each of the two darts of one edge to
the other one (e.g. @ maps 1 to -1 and -1 to 1 in Fig 1(b)). The cycles of « and
o containing a dart d will be respectively denoted by a*(d) and o*(d).

Each vertex of a combinatorial map G = (D, 0, ) is implicitly encoded by
its o orbit. This implicit encoding may be transformed into an explicit one by
using a vertex’s labeling function [1]. Such a function, denoted by u associates
to each dart d a label which identifies its o-orbit o*(d). More precisely a vertex’s
labeling function should satisfy:

V(d,d')? € D u(d) = u(d) o (d) = o* (d)

For example, if darts are encoded by integers, the function pu(d) = ming c,«){d'}
defines a valid vertex’s labeling function.
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Fig.2. A dual of a combinatorial map (a) encoding a 3 x 3 grid with the con-
tracted combinatorial map (b) obtained by the contraction of the contraction ker-
nel (CK) K; = «*(1,2,10,11,12,6). The reduced combinatorial map (c) is obtained
by the removal of the empty self loops defined by the RKESL K, = «*(4) and
the removal kernel of empty double edges (RKEDE) K3 = «*(13,14,15,19,18,22) U
{24,-16,17, —20, 21, —23,3, —5}.

Given a combinatorial map G = (D, o, a), its dual is defined by G = (D, ¢, a)
with ¢ = 0 o «(Fig 1(c)). The cycles of permutation ¢ encode the faces of the
combinatorial map and may be interpreted as the sequence of darts encountered
when turning clockwise around a face. The cycle of ¢ containing a dart d will
be denoted by ¢*(d).

Fig. 1 represents the encoding of the ideal segmentation of a house by a
combinatorial map. The set of dart D of this combinatorial map is equal to
{-=6,...,—1,1,...,6} and the involution « is implicitly encoded by the sign on
this figure. The region corresponding to the background of the house is encoded
by the vertex 0*(2) = (2,3,5,6) (Fig. 1(b)). This vertex corresponds to a face of
the dual combinatorial map(Fig.1(c)) where 0*(2) corresponds to the sequence
of darts encoutered when turning counter-clockwize around the face. Note that
a mapping such as p(2) = p(3) = u(5) = p(6) = 2 would be consistent for
the vertex 0*(2). The ¢ cycle of the dart 2 is defined by : ¢(2) = o(a(2)) =
o(=2) = —1, p(—-1) = (1) = —6 and ¢(—6) = o(6) = 2. We have thus
©*(2) = (2,—1,—6). This cycle is represented by the bottom right vertex in
Fig. 1(c).

2.2 Combinatorial map encoding of a planar sampling grid

Fig. 2(a) describes a dual combinatorial map Gy = (D, @0, ag) encoding a 3 x 3
4-connected planar sampling grid. Using this encoding the ¢, o and « cycles of
each dart may be respectively understood as elements of dimensions 0, 1 and
2 and formally associated to a 2D cellular complex [3]. More precisely, each g
cycle may be associated to a lignel between two pixels. Each of the two darts
of an ag cycle corresponds to an orientation along the lignel. For example, the
cycle af(1) = (1,—1) is associated to the lignel encoding the right border of the
top left pixel of the 3 x 3 grid (Fig. 2(a)). The darts 1 and —1 define respectively
a bottom to top and top to bottom orientation along the lignel.



2.3 Construction of Combinatorial Pyramids

A combinatorial pyramid is defined by an initial combinatorial map successively
reduced by a sequence of contraction or removal operations. Contraction opera-
tions are encoded by contraction kernels (CK). These kernels defined as a forest
of the current combinatorial map may create redundant edges such as empty-self
loops and double edges(Fig. 2(b)). Empty self loops (edge a3(4) in Fig. 2(b))
may be interpreted as region’s inner boundaries and are removed by an empty
self loops removal kernel (RKESL) after the contraction step. The remaining re-
dundant edges called double edges, belong to degree 2 vertices in G (e.g. ¢1(13),
©31(14), ¢1(15)) in Fig. 2(b)) and are removed using a double edge removal ker-
nel (RKEDE) which contains all darts incident to a degree 2 dual vertex. From
a geometrical point of view, a RKEDE concatenates several boudaries between
two regions which are connected by degree two dual vertices. The application of
a kernel CK or RKESL induces thus the removal of some boundaries between
regions while the application of a RKEDE concatenates boundaries between
regions which become artificially divided after the application of a CK. Note
that only the contraction kernel is application dependent. The application of the
RKESL and the RKEDE may be interpreted as cleaning steps of the data struc-
ture and are automatically deduced from the combinatorial map created by the
contraction kernel. Given an initial combinatorial map Gy, encoding a planar
sampling grid, a first contraction kernel K is applied on Gy in order to produce
a first reduced combinatorial map G1. The combinatorial map G is then further
reduced using the RKESL K5 which produces the reduced combinatorial map G,
and the RKEDE K3 which produces the combinatorial map Gs which encodes
the same partition then GG; but without any redundant edges. This process may
be applied recursively in order to produce a sequence (Gy,...,G,) of reduced
combinatorial maps definining the combinatorial pyramid. Further details about
the construction scheme of a combinatorial pyramid may be found in [1, 2].

As mentioned in Section 2.1, if the initial combinatorial map encodes a planar
sampling grid, the geometrical embedding of each initial dart corresponds to an
oriented lignel. Moreover, each dart of a reduced combinatorial map which is not
a self loop encodes a connected boundary between two regions. The embedding
of the boudary associated to such a dart may be retrieved from the embedding
of the darts of the initial combinatorial map Gy. Let us consider a reduced
combinatorial map G; = (D;, 0, ;) defined at level ¢ and one dart d € D;
which is not a self loop. The sequence dj ...,d, of initial darts encoding the
embedding of the dart d is retreived from the receptive field of d [1, 4] using the
following equation:

di =d ,dj1 = @y (ao(dy)) (1)
where Gy = (Do, po, ) is the dual of the initial combinatorial map and my; is
the minimal integer such that ¢f(ag(d;)) survives at level ¢ or belongs to a double
edge kernel. The dart d,, is the first dart defined by equation 1 which survives up
to level 7. This dart also satisfies ag(d,,) = ;(d) by construction of the receptive
fields [1, 4]. Note that the tests performed on ¢d(ag(d;)), ¢ € {1,...,m;} to



determine if it is equal to dj41 or d, are performed in constant time using the
implicit encoding of combinatorial pyramids [1].

If Gy encodes the 4-connected planar sampling grid, each ¢q cycle is com-
posed of at most 4 darts (Fig. 2(b)). Therefore, the computation of d;;1 from
d; requires at most 4 iterations and the determination of the whole sequence
of lignels composing a boundary between two regions is performed in a time
proportional to the length of this boundary.

2.4 Region’s boundaries : An Example

Let us consider the dart 16 in Fig. 2 (¢). This dart belongs to the o3 cycle
0%(16) = (16,7,8) of G5 and encodes the first row of the 3 x 3 grid (Fig. 2 (¢)).
The sequence of initial darts encoding the boundary of the dart 16 is retrived
using equation 1 and is equal to: 16.15.14.13.24 (Fig. 2(b)). We have for example
15 = @o(ap(16)) = po(—16) (Fig. 2 (c)). In the same way, the darts 7 and 8
are respectively associated to the sequences of initial darts 7 and 8.9 (Table 1
and Fig. 2(b)). Since each initial dart is associated to an oriented linel, one may
associate a sequence of Freeman’s code to each sequence of initial darts (third
column of Table 1 and Fig. 2(b)). The sequence of Freeman’s code encoding the
boundary of ¢3(16) = (16,7, 8) is defined as the concatenation of the sequences
associated to 16, 7 and 8 and is equal to : 1.2.2.2.3.0.0.0 (Fig. 2 (b)).

reduced dart|sequence of initial darts|Freeman’s codes
16 16.15.14.13.24 1.2.2.2.3
7 7 0
8 8.9 0.0

Table 1. Sequences of Freeman’s codes encoding the boundary of each of the darts
c3(16) = (16,7,8) within the reduced combinatorial map G3(Fig. 2(c)).
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